Using artificial intelligence to predict and prevent non-cancer mortality in patients with cancer: ARILIS study protocol

Cover Page

Cite item

Full Text

Abstract

Aim: To present the ARILIS study aimed at assessing the use of artificial intelligence to analyze chest computed tomography (CT) data to predict and prevent non-cancer mortality in patients with cancer.

Material and methods: This cohort study will include patients with cancer diagnosed in the Arkhangelsk region (AR) within the 2019–2023 period. The COVID-19 patients with pneumonia, patients with general medical conditions, and the population of the Know Your Heart Study are planned to be enrolled as control groups. To detect and quantify the CT signs of the cardiovascular, pulmonary, and bone disorders, the thoracic СT scans of all the subjects will be processed using the multi-targeted AI algorithm provided by the IRA Labs company. From the date of processing of the thoracic CT scans using the multi-targeted AI algorithm, the study subjects will be followed for new clinical diagnoses and all-cause mortality.

Expected results: T he study will determine the prevalence of CT signs of the cardiovascular, pulmonary, and bone disorders in patients with cancer compared with the Know Your Heart Study population sample. It will also assess the incidence of cardiovascular, pulmonary, and bone events and all-cause mortality in patients with cancer compared with control groups, explore the potential of the IRA Labs’ multi-targeted AI algorithm in the assessment and reclassification of assessed risks in patients with cancer, and provide a software product for using mtIA in healthcare practice.

About the authors

Mikhail Yu. Valkov

Northern State Medical University; Arkhangelsk Regional Oncological Dispensary

Author for correspondence.
Email: i@mvalkov.ru
ORCID iD: 0000-0003-3230-9638
SPIN-code: 8608-8239

MD, Dr. Sci (Medicine), Professor

Russian Federation, 51 Troitsky ave., 163069 Arkhangelsk; Arkhangelsk

Andrej М. Grjibovski

Northern State Medical University; Northern (Arctic) Federal University n.a. M.V. Lomonosov; M.K. Ammosov North-Eastern Federal University

Email: a.grjibovski@yandex.ru
ORCID iD: 0000-0002-5464-0498
SPIN-code: 5118-0081

MD, MPhil, PhD

Russian Federation, 51 Troitsky ave., 163069 Arkhangelsk; Arkhangelsk; Yakutsk

Alexander V. Kudryavtsev

Northern State Medical University

Email: ispha09@gmail.com
ORCID iD: 0000-0001-8902-8947
SPIN-code: 9296-2930

PhD

Russian Federation, 51 Troitsky ave., 163069 Arkhangelsk

Maxim A. Bogdanov

Northern State Medical University

Email: chief-bma@ya.ru
ORCID iD: 0009-0002-3469-658X
Russian Federation, 51 Troitsky ave., 163069 Arkhangelsk

Dmitriy V. Bogdanov

Northern State Medical University; Arkhangelsk Regional Oncological Dispensary

Email: bogdanovdv@onko29.ru
ORCID iD: 0000-0002-4105-326X
SPIN-code: 2507-1354
Russian Federation, 51 Troitsky ave., 163069 Arkhangelsk; Arkhangelsk

Andrey A. Dyachenko

Northern State Medical University

Email: andreydyachenko3@gmail.com
ORCID iD: 0000-0001-8421-5305
SPIN-code: 5887-5750

MD, Cand. Sci. (Medicine)

Russian Federation, 51 Troitsky ave., 163069 Arkhangelsk

Valeria Yu. Chernina

JSC “IRA Labs”

Email: chernina909@gmail.com
ORCID iD: 0000-0002-0302-293X
SPIN-code: 8896-8051
Russian Federation, Moscow

Mikhail G. Belyaev

JSC “IRA Labs”

Email: belyaevmichel@gmail.com
ORCID iD: 0000-0001-9906-6453
SPIN-code: 2406-1772

Cand. Sci. (Physics and Mathematics), Professor

Russian Federation, Moscow

Farukh R. Yaushev

JSC “IRA Labs”; Moscow Institute of Physics and Technology

Email: yaushev@phystech.edu
ORCID iD: 0009-0006-1210-5311
Russian Federation, Moscow; Dolgoprudny

Elena V. Panina

JSC “IRA Labs”

Email: panina@npcmr.ru
ORCID iD: 0009-0008-2981-2957
SPIN-code: 7633-4770
Russian Federation, Moscow

Maria A. Donskova

JSC “IRA Labs”

Email: m.donskova@ira-labs.com
ORCID iD: 0009-0001-5095-1723
SPIN-code: 1892-3711
Russian Federation, Moscow

Evgenia A. Soboleva

JSC “IRA Labs”

Email: info@ira-labs.com
ORCID iD: 0009-0009-4037-6911
Russian Federation, Moscow

Maria V. Basova

JSC “IRA Labs”

Email: m.basova@ira-labs.com
ORCID iD: 0009-0000-3325-8452
Russian Federation, Moscow

Maxim E. Pisov

JSC “IRA Labs”

Email: max@ira-labs.com
ORCID iD: 0000-0001-8727-5792
SPIN-code: 7812-9031
Russian Federation, Moscow

Maria N. Dugova

JSC “IRA Labs”

Email: dugovamaria@yandex.ru
ORCID iD: 0009-0004-5586-8015
Russian Federation, Moscow

Ekaterina A. Petrash

JSC “IRA Labs”

Email: e.a.petrash@gmail.com
ORCID iD: 0000-0001-6572-5369
SPIN-code: 6910-8890
Russian Federation, Moscow

Regina R. Gareeva

JSC “IRA Labs”

Email: regina.gareeva@phystech.edu
ORCID iD: 0009-0007-5519-7268
Russian Federation, Moscow

Alexey E. Shevtsov

JSC “IRA Labs”

Email: a.shevtsov@ira-labs.com
ORCID iD: 0000-0003-3085-4325
Russian Federation, Moscow

Vilgelm V. Volman

JSC “IRA Labs”

Email: v.volman@ira-labs.com
ORCID iD: 0009-0000-6631-1256
Russian Federation, Moscow

Zelimhan G.-M. Berikhanov

Sechenov First Moscow State Medical Univesity

Email: berikkhanov_z_g@staff.sechenov.ru
ORCID iD: 0000-0002-4335-3987
SPIN-code: 5506-9748

MD, Cand. Sci. (Medicine)

Russian Federation, Moscow

Sergey N. Avdeev

Sechenov First Moscow State Medical Univesity

Email: serg_avdeev@list.ru
ORCID iD: 0000-0002-5999-2150
SPIN-code: 1645-5524

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow

Natalya S. Serova

Sechenov First Moscow State Medical Univesity

Email: serova_n_s@staff.sechenov.ru
ORCID iD: 0000-0001-6697-7824
SPIN-code: 4632-3235

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow

Marina I. Sekacheva

Sechenov First Moscow State Medical Univesity

Email: serova_n_s@staff.sechenov.ru
ORCID iD: 0000-0003-0015-7094
SPIN-code: 4801-3742

PhD, Associate Professor

Russian Federation, Moscow

Yaroslav I. Ashikhmin

Center for Healthcare Quality Assessment and Control

Email: ashikhmin@rosmedex.ru
ORCID iD: 0000-0002-1243-5701
SPIN-code: 3871-1099

MD, Cand. Sci. (Medicine)

Russian Federation, Moscow

Zhanna E. Belaya

Endocrinology Research Center

Email: jannabelaya@gmail.com
ORCID iD: 0000-0002-6674-6441
SPIN-code: 4746-7173

MD, Dr. Sci. (Medicine)

Russian Federation, Moscow

Vitaly V. Omelyanovskiy

Center for Healthcare Quality Assessment and Control

Email: vvo@rosmedex.ru
ORCID iD: 0000-0003-1581-0703
SPIN-code: 1776-4270

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow

Mikhail Yu. Goncharov

JSC “IRA Labs”; Artificial Intelligence Research Institute

Email: m.goncharov@ira-labs.com
ORCID iD: 0009-0009-8417-0878
SPIN-code: 7877-3375
Russian Federation, Moscow; Moscow

Aleksandr S. Gershtanskiy

Northern State Medical University

Email: zdrav@dvinaland.ru
ORCID iD: 0009-0000-9646-1511
Russian Federation, 51 Troitsky ave., 163069 Arkhangelsk

Victor A. Gombolevskiy

JSC “IRA Labs”; Sechenov First Moscow State Medical Univesity; Artificial Intelligence Research Institute

Email: g_victor@mail.ru
ORCID iD: 0000-0003-1816-1315
SPIN-code: 6810-3279

MD, Cand. Sci. (Medicine)

Moscow; Moscow; Moscow

References

  1. World Health Organization: The top 10 causes of death. Global web-site. [cited 2024 Febr 13]. Available from: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
  2. Wong MCS, Huang J, Chan PS, et al. Global incidence and mortality of gastric cancer, 1980-2018. JAMA Network Open. 2021;4(7):e2118457. doi: 10.1001/jamanetworkopen.2021.18457
  3. Howlader N, Forjaz G, Mooradian MJ, et al. The effect of advances in lung-cancer treatment on population mortality. N Engl J Med. 2020;383(7):640–649. doi: 10.1056/NEJMoa1916623
  4. Allemani C, Weir HK, Carreira H, et al. Global surveillance of cancer survival 1995–2009: analysis of individual data for 25 676 887 patients from 279 population-based registries in 67 countries (CONCORD-2). Lancet. 2015;385(9972):977–1010. doi: 10.1016/S0140-6736(14)62038-9
  5. Zeng H, Chen W, Zheng R, et al. Changing cancer survival in China during 2003–2015: a pooled analysis of 17 population-based cancer registries. Lancet Global Health. 2018;6(5):e555–e567. doi: 10.1016/S2214-109X(18)30127-X
  6. Valkova LE, Merabishvili VM, Pankratyeva AYu, et al. Survival of cancer patients screened at the first stage of dispanserization of certain groups of the adult population: a population-based epidemiological analysis. Problems in Oncology. 2021;67(4): 501–510. EDN: LHCVAZ d oi: 10.37469/0507-3758-2021-67-4-501-510
  7. Zaorsky NG, Churilla TM., Egleston BL, et al. Causes of death among cancer patients. Ann Oncol. 2017;28(2):400–407. doi: 10.1093/annonc/mdw604
  8. Valkova LE, Levit ML, Merabishvili VM, et al. Cancer mortality trends after implementation of the national programme for dispensarization of certain groups of the adult population: a population-based study from Arkhangelsk, North-western Russia. Research'n Practical Medicine Journal. 2020;7(4):175–182. EDN: UWZJGX doi: 10.17709/2409-2231-2020-7-4-14
  9. Cao B, Soerjomataram I, Bray F. The burden and prevention of premature deaths from noncommunicable diseases, including cancer: a global perspective. In: Wild C.P., Weiderpass E., Stewart B.W., eds. World Cancer Report. Cancer research for cancer prevention. Lion; 2020.
  10. Authors/Task Force Members, Piepoli MF, Hoes AW, et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: the sixth joint task force of the European Society of Cardiology and other societies on cardiovascular disease prevention in clinical practice (constituted by representatives of 10 societies and by invited experts): developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur J Prev Cardiol. 2016;23(11):NP1–NP96. doi: 10.1177/2047487316653709
  11. Sedlak T, Herscovici R, Cook-Wiens G, et al. Predicted versus observed major adverse cardiac event risk in women with evidence of ischemia and no obstructive coronary artery disease: a report from WISE (Women's Ischemia Syndrome Evaluation). J Am Heart Assoc. 2020;9(7):e013234. d oi: 10.1161/JAHA.119.013234
  12. Sofogianni A, Stalikas N, Antza C, Tziomalos K. Cardiovascular risk prediction models and scores in the era of personalized medicine. J Pers Med. 2022;12(7):1180. doi: 10.3390/jpm12071180
  13. Safaryan AS, Vygodin VA, Nebieridze DV, Nikonova KV. Comparability of cardiovascular risk assessment according to the SCORE and the coronary artery calcium score (Agatston score). Cardiovascular Therapy and Prevention. 2023;22(9):3650. EDN: EWWUXT doi: 10.15829/1728-8800-2023-3650
  14. Experiment on the use of innovative technologies in computer vision for the analysis of medical images and further application in the healthcare system. [cited 2024 May 18]. Available from: https://mosmed.ai
  15. Chernina VYu, Belyaev MG, Silin AYu, et al. Analysis of the diagnostic and economic impact of the combined artificial intelligence algorithm for analysis of 10 pathological findings on chest computed tomography. Digital Diagnostics. 2023;4(2):105−132. EDN: UGUJWJ d oi: https://doi.org/10.17816/DD321963
  16. Morozov SP, Protsenko DN, Smetanina SV, et al. Radiation diagnostics of coronavirus disease (COVID-19): organization, methodology, interpretation of results: preprint no. CDT-2020-I. In: The best practices of radiation and instrumental diagnostics. Issue 65. Moscow: GBUZ "NPCC DiT DZM"; 2020. (In Russ.)
  17. Lynch DA, Austin JH, Hogg JC, et al. CT-definable subtypes of chronic obstructive pulmonary disease: a statement of the Fleischner Society. Radiology. 2015;277(1):192–205. d oi: 10.1148/radiol.2015141579
  18. Hersh CP, Washko GR, Estépar RS, et al. Paired inspiratory-expiratory chest CT scans to assess for small airways disease in COPD. Respir Res. 2013;14(1):42. d oi: 10.1186/1465-9921-14-42
  19. Erbel R, Aboyans V, Boileau C, et al. 2014 ESC Guidelines on the diagnosis and treatment of aortic diseases: Document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult. The task force for the diagnosis and treatment of aortic diseases of the European Society of Cardiology (ESC). Eur Heart J. 2014;35(41):2873–2926. doi: 10.1093/eurheartj/ehu281
  20. Wanhainen A, Verzini, Van Herzeele I, et al. Editor's Choice — European Society for Vascular Surgery (ESVS) 2019 Clinical practice guidelines on the management of abdominal aorto-iliac artery aneurysms. Eur J Vascul Endovascul Surg. 2019;57(1):8–93. doi: 10.1016/j.ejvs.2018.09.020
  21. Jurgens PT, Carr JJ, Terry JG, et al. Association of abdominal aorta calcium and coronary artery calcium with incident cardiovascular and coronary heart disease events in black and white middle-aged people: The coronary artery risk development in young adults’ study. J Am Heart Assoc. 2021;10(24):e023037. doi: 10.1161/JAHA.121.023037
  22. Galiè N, Humbert M, Vachiery JL, et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The joint task force for the diagnosis and treatment of pulmonary hypertension of the European society of cardiology (ESC) and the European respiratory society (ERS): Endorsed by: Association for European paediatric and congenital cardiology (AEPC), International society for heart and lung transplantation (ISHLT). Eur Respir J. 2015;46(4):903–975. doi: 10.1183/13993003.01032-2015
  23. Agatston AS, Janowitz WR, Hildner FJ, et al. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol. 1990;15:(4):827–832. d oi: 10.1016/0735-1097(90)90282-t
  24. Belaya ZhE, Belova KYu, Biryukova EV, et al. Federal clinical guidelines for diagnosis, treatment and prevention of osteoporosis. Osteoporosis and Bone Diseases. 2021;24(2):4–47. EDN: TUONYE doi: 10.14341/osteo12930
  25. Genant HK, Jergas M. Assessment of prevalent and incident vertebral fractures in osteoporosis research. Osteoporosis Int. 2003;14 Suppl 3:S43–S55. doi: 10.1007/S00198-002-1348-1
  26. Spearman JV, Renker M, Schoepf UJ, et al. Prognostic value of epicardial fat volume measurements by computed tomography: a systematic review of the literature. Eur Radiol. 2015;25(11):3372–3381. doi: 10.1007/s00330-015-3765-5
  27. Cook S, Malyutina S, Kudryavtsev AV, et al. Know your heart: rationale, design and conduct of a cross-sectional study of cardiovascular structure, function and risk factors in 4500 men and women aged 35-69 years from two Russian cities. Wellcome Open Res. 2018;3:67. doi: 10.12688/wellcomeopenres.14619.3
  28. Mirolyubova O, Kholmatova K, Postoeva A, et al. Socio-demographic, lifestyle, and cardiometabolic characteristics associated with low-grade systemic inflammation in Russian adult population. Biomolecules. 2023;13(5):835. d oi: 10.3390/biom13050835
  29. Drapkina OM, Shalnova SA, Imaeva AE, et al. Epidemiology of cardiovascular diseases in regions of Russian Federation. Third survey (ESSE-RF-3). Rationale and study design. Cardiovascular Therapy and Prevention. 2022;21(5):48–57. d oi: 10.15829/1728-8800-2022-3246
  30. McClelland RL, Jorgensen NW, Budoff M, et al. 10-year coronary heart disease risk prediction using coronary artery calcium and traditional risk factors: derivation in the MESA (Multi-Ethnic Study of Atherosclerosis) with validation in the HNR (Heinz Nixdorf Recall) study and the DHS (Dallas Heart Study). J Am Coll Cardiol. 2015;66(15):1643–1653. d oi: 10.1016/j.jacc.2015.08.035
  31. Diagnostics and Telemedicine Center [Internet]. AIRA Labs LLC Chest-IRA. [cited 2024 Apr 17]. Available from: h ttps://mosmed.ai/service_catalog/chestira
  32. Morozov SP, Vladzimirskiy AV, Klyashtornyi VG, et al. Clinical trials of software based on intelligent technologies (radiation diagnostics): preprint No. CDT-2019-1. In: The best practices of radiation and instrumental diagnostics. Issue 23. Moscow: GBUZ "NPCC DiT DZM"; 2019. (In Russ.)
  33. Vladzimirskiy AV, Vasiliev YuA, Arzamasov КМ, et al. Computer vision in radiation diagnostics: the first stage of the Moscow experiment. Moscow: Izdatel'skie resheniya; 2023. (In Russ.) EDN: FOYLXK
  34. Ansah JP, Chiu CT. Projecting the chronic disease burden among the adult population in the United States using a multi-state population model. Front Public Health. 2023;10:1082183. doi: 10.3389/fpubh.2022.1082183
  35. Koene RJ, Prizment AE, Blaes A, Konety SH. Shared risk factors in cardiovascular disease and cancer. Circulation. 2016;133(11):1104–1114. d oi: 10.1161/CIRCULATIONAHA.115.020406

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic representation of the project stages.

Download (47KB)
3. Fig. 2. The results of the analysis of computed tomography using multitasking artificial intelligence technology; an image in the axial plane with data on detected pathologies: green indicates the values of findings within the normal range, yellow and orange — clinically insignificant findings, red — clinically significant; on the right is a scrolling corresponding to the CT series, on which colors are displayed pathologies identified by artificial intelligence on slices.

Download (251KB)
4. Fig. 3. The result of processing computed tomography using multi-target artificial intelligence technology. For each CT scan, 4 key images are created, grouped according to the following principle: findings in the respiratory system, findings in the cardiovascular system, findings in the organs of the abdominal cavity and retroperitoneal space, findings in the bone system.

Download (535KB)

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».