Using artificial intelligence to predict and prevent non-cancer mortality in patients with cancer: ARILIS study protocol
- Authors: Valkov M.Y.1,2, Grjibovski A.М.1,3,4, Kudryavtsev A.V.1, Bogdanov M.A.1, Bogdanov D.V.1,2, Dyachenko A.A.1, Chernina V.Y.5, Belyaev M.G.5, Yaushev F.R.5,6, Panina E.V.5, Donskova M.A.5, Soboleva E.A.5, Basova M.V.5, Pisov M.E.5, Dugova M.N.5, Petrash E.A.5, Gareeva R.R.5, Shevtsov A.E.5, Volman V.V.5, Berikhanov Z.G.7, Avdeev S.N.7, Serova N.S.7, Sekacheva M.I.7, Ashikhmin Y.I.8, Belaya Z.E.9, Omelyanovskiy V.V.8, Goncharov M.Y.5,10, Gershtanskiy A.S.1, Gombolevskiy V.A.5,7,10
-
Affiliations:
- Northern State Medical University
- Arkhangelsk Regional Oncological Dispensary
- Northern (Arctic) Federal University n.a. M.V. Lomonosov
- M.K. Ammosov North-Eastern Federal University
- JSC “IRA Labs”
- Moscow Institute of Physics and Technology
- Sechenov First Moscow State Medical Univesity
- Center for Healthcare Quality Assessment and Control
- Endocrinology Research Center
- Artificial Intelligence Research Institute
- Issue: Vol 31, No 4 (2024)
- Pages: 314-330
- Section: CLINICAL TRAIL PROTOCOLS
- URL: https://journal-vniispk.ru/1728-0869/article/view/316999
- DOI: https://doi.org/10.17816/humeco635357
- ID: 316999
Cite item
Full Text
Abstract
Aim: To present the ARILIS study aimed at assessing the use of artificial intelligence to analyze chest computed tomography (CT) data to predict and prevent non-cancer mortality in patients with cancer.
Material and methods: This cohort study will include patients with cancer diagnosed in the Arkhangelsk region (AR) within the 2019–2023 period. The COVID-19 patients with pneumonia, patients with general medical conditions, and the population of the Know Your Heart Study are planned to be enrolled as control groups. To detect and quantify the CT signs of the cardiovascular, pulmonary, and bone disorders, the thoracic СT scans of all the subjects will be processed using the multi-targeted AI algorithm provided by the IRA Labs company. From the date of processing of the thoracic CT scans using the multi-targeted AI algorithm, the study subjects will be followed for new clinical diagnoses and all-cause mortality.
Expected results: T he study will determine the prevalence of CT signs of the cardiovascular, pulmonary, and bone disorders in patients with cancer compared with the Know Your Heart Study population sample. It will also assess the incidence of cardiovascular, pulmonary, and bone events and all-cause mortality in patients with cancer compared with control groups, explore the potential of the IRA Labs’ multi-targeted AI algorithm in the assessment and reclassification of assessed risks in patients with cancer, and provide a software product for using mtIA in healthcare practice.
Full Text
##article.viewOnOriginalSite##About the authors
Mikhail Yu. Valkov
Northern State Medical University; Arkhangelsk Regional Oncological Dispensary
Author for correspondence.
Email: i@mvalkov.ru
ORCID iD: 0000-0003-3230-9638
SPIN-code: 8608-8239
MD, Dr. Sci (Medicine), Professor
Russian Federation, 51 Troitsky ave., 163069 Arkhangelsk; ArkhangelskAndrej М. Grjibovski
Northern State Medical University; Northern (Arctic) Federal University n.a. M.V. Lomonosov; M.K. Ammosov North-Eastern Federal University
Email: a.grjibovski@yandex.ru
ORCID iD: 0000-0002-5464-0498
SPIN-code: 5118-0081
MD, MPhil, PhD
Russian Federation, 51 Troitsky ave., 163069 Arkhangelsk; Arkhangelsk; YakutskAlexander V. Kudryavtsev
Northern State Medical University
Email: ispha09@gmail.com
ORCID iD: 0000-0001-8902-8947
SPIN-code: 9296-2930
PhD
Russian Federation, 51 Troitsky ave., 163069 ArkhangelskMaxim A. Bogdanov
Northern State Medical University
Email: chief-bma@ya.ru
ORCID iD: 0009-0002-3469-658X
Russian Federation, 51 Troitsky ave., 163069 Arkhangelsk
Dmitriy V. Bogdanov
Northern State Medical University; Arkhangelsk Regional Oncological Dispensary
Email: bogdanovdv@onko29.ru
ORCID iD: 0000-0002-4105-326X
SPIN-code: 2507-1354
Russian Federation, 51 Troitsky ave., 163069 Arkhangelsk; Arkhangelsk
Andrey A. Dyachenko
Northern State Medical University
Email: andreydyachenko3@gmail.com
ORCID iD: 0000-0001-8421-5305
SPIN-code: 5887-5750
MD, Cand. Sci. (Medicine)
Russian Federation, 51 Troitsky ave., 163069 ArkhangelskValeria Yu. Chernina
JSC “IRA Labs”
Email: chernina909@gmail.com
ORCID iD: 0000-0002-0302-293X
SPIN-code: 8896-8051
Russian Federation, Moscow
Mikhail G. Belyaev
JSC “IRA Labs”
Email: belyaevmichel@gmail.com
ORCID iD: 0000-0001-9906-6453
SPIN-code: 2406-1772
Cand. Sci. (Physics and Mathematics), Professor
Russian Federation, MoscowFarukh R. Yaushev
JSC “IRA Labs”; Moscow Institute of Physics and Technology
Email: yaushev@phystech.edu
ORCID iD: 0009-0006-1210-5311
Russian Federation, Moscow; Dolgoprudny
Elena V. Panina
JSC “IRA Labs”
Email: panina@npcmr.ru
ORCID iD: 0009-0008-2981-2957
SPIN-code: 7633-4770
Russian Federation, Moscow
Maria A. Donskova
JSC “IRA Labs”
Email: m.donskova@ira-labs.com
ORCID iD: 0009-0001-5095-1723
SPIN-code: 1892-3711
Russian Federation, Moscow
Evgenia A. Soboleva
JSC “IRA Labs”
Email: info@ira-labs.com
ORCID iD: 0009-0009-4037-6911
Russian Federation, Moscow
Maria V. Basova
JSC “IRA Labs”
Email: m.basova@ira-labs.com
ORCID iD: 0009-0000-3325-8452
Russian Federation, Moscow
Maxim E. Pisov
JSC “IRA Labs”
Email: max@ira-labs.com
ORCID iD: 0000-0001-8727-5792
SPIN-code: 7812-9031
Russian Federation, Moscow
Maria N. Dugova
JSC “IRA Labs”
Email: dugovamaria@yandex.ru
ORCID iD: 0009-0004-5586-8015
Russian Federation, Moscow
Ekaterina A. Petrash
JSC “IRA Labs”
Email: e.a.petrash@gmail.com
ORCID iD: 0000-0001-6572-5369
SPIN-code: 6910-8890
Russian Federation, Moscow
Regina R. Gareeva
JSC “IRA Labs”
Email: regina.gareeva@phystech.edu
ORCID iD: 0009-0007-5519-7268
Russian Federation, Moscow
Alexey E. Shevtsov
JSC “IRA Labs”
Email: a.shevtsov@ira-labs.com
ORCID iD: 0000-0003-3085-4325
Russian Federation, Moscow
Vilgelm V. Volman
JSC “IRA Labs”
Email: v.volman@ira-labs.com
ORCID iD: 0009-0000-6631-1256
Russian Federation, Moscow
Zelimhan G.-M. Berikhanov
Sechenov First Moscow State Medical Univesity
Email: berikkhanov_z_g@staff.sechenov.ru
ORCID iD: 0000-0002-4335-3987
SPIN-code: 5506-9748
MD, Cand. Sci. (Medicine)
Russian Federation, MoscowSergey N. Avdeev
Sechenov First Moscow State Medical Univesity
Email: serg_avdeev@list.ru
ORCID iD: 0000-0002-5999-2150
SPIN-code: 1645-5524
MD, Dr. Sci. (Medicine), Professor
Russian Federation, MoscowNatalya S. Serova
Sechenov First Moscow State Medical Univesity
Email: serova_n_s@staff.sechenov.ru
ORCID iD: 0000-0001-6697-7824
SPIN-code: 4632-3235
MD, Dr. Sci. (Medicine), Professor
Russian Federation, MoscowMarina I. Sekacheva
Sechenov First Moscow State Medical Univesity
Email: serova_n_s@staff.sechenov.ru
ORCID iD: 0000-0003-0015-7094
SPIN-code: 4801-3742
PhD, Associate Professor
Russian Federation, MoscowYaroslav I. Ashikhmin
Center for Healthcare Quality Assessment and Control
Email: ashikhmin@rosmedex.ru
ORCID iD: 0000-0002-1243-5701
SPIN-code: 3871-1099
MD, Cand. Sci. (Medicine)
Russian Federation, MoscowZhanna E. Belaya
Endocrinology Research Center
Email: jannabelaya@gmail.com
ORCID iD: 0000-0002-6674-6441
SPIN-code: 4746-7173
MD, Dr. Sci. (Medicine)
Russian Federation, MoscowVitaly V. Omelyanovskiy
Center for Healthcare Quality Assessment and Control
Email: vvo@rosmedex.ru
ORCID iD: 0000-0003-1581-0703
SPIN-code: 1776-4270
MD, Dr. Sci. (Medicine), Professor
Russian Federation, MoscowMikhail Yu. Goncharov
JSC “IRA Labs”; Artificial Intelligence Research Institute
Email: m.goncharov@ira-labs.com
ORCID iD: 0009-0009-8417-0878
SPIN-code: 7877-3375
Russian Federation, Moscow; Moscow
Aleksandr S. Gershtanskiy
Northern State Medical University
Email: zdrav@dvinaland.ru
ORCID iD: 0009-0000-9646-1511
Russian Federation, 51 Troitsky ave., 163069 Arkhangelsk
Victor A. Gombolevskiy
JSC “IRA Labs”; Sechenov First Moscow State Medical Univesity; Artificial Intelligence Research Institute
Email: g_victor@mail.ru
ORCID iD: 0000-0003-1816-1315
SPIN-code: 6810-3279
MD, Cand. Sci. (Medicine)
Moscow; Moscow; MoscowReferences
- World Health Organization: The top 10 causes of death. Global web-site. [cited 2024 Febr 13]. Available from: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
- Wong MCS, Huang J, Chan PS, et al. Global incidence and mortality of gastric cancer, 1980-2018. JAMA Network Open. 2021;4(7):e2118457. doi: 10.1001/jamanetworkopen.2021.18457
- Howlader N, Forjaz G, Mooradian MJ, et al. The effect of advances in lung-cancer treatment on population mortality. N Engl J Med. 2020;383(7):640–649. doi: 10.1056/NEJMoa1916623
- Allemani C, Weir HK, Carreira H, et al. Global surveillance of cancer survival 1995–2009: analysis of individual data for 25 676 887 patients from 279 population-based registries in 67 countries (CONCORD-2). Lancet. 2015;385(9972):977–1010. doi: 10.1016/S0140-6736(14)62038-9
- Zeng H, Chen W, Zheng R, et al. Changing cancer survival in China during 2003–2015: a pooled analysis of 17 population-based cancer registries. Lancet Global Health. 2018;6(5):e555–e567. doi: 10.1016/S2214-109X(18)30127-X
- Valkova LE, Merabishvili VM, Pankratyeva AYu, et al. Survival of cancer patients screened at the first stage of dispanserization of certain groups of the adult population: a population-based epidemiological analysis. Problems in Oncology. 2021;67(4): 501–510. EDN: LHCVAZ d oi: 10.37469/0507-3758-2021-67-4-501-510
- Zaorsky NG, Churilla TM., Egleston BL, et al. Causes of death among cancer patients. Ann Oncol. 2017;28(2):400–407. doi: 10.1093/annonc/mdw604
- Valkova LE, Levit ML, Merabishvili VM, et al. Cancer mortality trends after implementation of the national programme for dispensarization of certain groups of the adult population: a population-based study from Arkhangelsk, North-western Russia. Research'n Practical Medicine Journal. 2020;7(4):175–182. EDN: UWZJGX doi: 10.17709/2409-2231-2020-7-4-14
- Cao B, Soerjomataram I, Bray F. The burden and prevention of premature deaths from noncommunicable diseases, including cancer: a global perspective. In: Wild C.P., Weiderpass E., Stewart B.W., eds. World Cancer Report. Cancer research for cancer prevention. Lion; 2020.
- Authors/Task Force Members, Piepoli MF, Hoes AW, et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: the sixth joint task force of the European Society of Cardiology and other societies on cardiovascular disease prevention in clinical practice (constituted by representatives of 10 societies and by invited experts): developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur J Prev Cardiol. 2016;23(11):NP1–NP96. doi: 10.1177/2047487316653709
- Sedlak T, Herscovici R, Cook-Wiens G, et al. Predicted versus observed major adverse cardiac event risk in women with evidence of ischemia and no obstructive coronary artery disease: a report from WISE (Women's Ischemia Syndrome Evaluation). J Am Heart Assoc. 2020;9(7):e013234. d oi: 10.1161/JAHA.119.013234
- Sofogianni A, Stalikas N, Antza C, Tziomalos K. Cardiovascular risk prediction models and scores in the era of personalized medicine. J Pers Med. 2022;12(7):1180. doi: 10.3390/jpm12071180
- Safaryan AS, Vygodin VA, Nebieridze DV, Nikonova KV. Comparability of cardiovascular risk assessment according to the SCORE and the coronary artery calcium score (Agatston score). Cardiovascular Therapy and Prevention. 2023;22(9):3650. EDN: EWWUXT doi: 10.15829/1728-8800-2023-3650
- Experiment on the use of innovative technologies in computer vision for the analysis of medical images and further application in the healthcare system. [cited 2024 May 18]. Available from: https://mosmed.ai
- Chernina VYu, Belyaev MG, Silin AYu, et al. Analysis of the diagnostic and economic impact of the combined artificial intelligence algorithm for analysis of 10 pathological findings on chest computed tomography. Digital Diagnostics. 2023;4(2):105−132. EDN: UGUJWJ d oi: https://doi.org/10.17816/DD321963
- Morozov SP, Protsenko DN, Smetanina SV, et al. Radiation diagnostics of coronavirus disease (COVID-19): organization, methodology, interpretation of results: preprint no. CDT-2020-I. In: The best practices of radiation and instrumental diagnostics. Issue 65. Moscow: GBUZ "NPCC DiT DZM"; 2020. (In Russ.)
- Lynch DA, Austin JH, Hogg JC, et al. CT-definable subtypes of chronic obstructive pulmonary disease: a statement of the Fleischner Society. Radiology. 2015;277(1):192–205. d oi: 10.1148/radiol.2015141579
- Hersh CP, Washko GR, Estépar RS, et al. Paired inspiratory-expiratory chest CT scans to assess for small airways disease in COPD. Respir Res. 2013;14(1):42. d oi: 10.1186/1465-9921-14-42
- Erbel R, Aboyans V, Boileau C, et al. 2014 ESC Guidelines on the diagnosis and treatment of aortic diseases: Document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult. The task force for the diagnosis and treatment of aortic diseases of the European Society of Cardiology (ESC). Eur Heart J. 2014;35(41):2873–2926. doi: 10.1093/eurheartj/ehu281
- Wanhainen A, Verzini, Van Herzeele I, et al. Editor's Choice — European Society for Vascular Surgery (ESVS) 2019 Clinical practice guidelines on the management of abdominal aorto-iliac artery aneurysms. Eur J Vascul Endovascul Surg. 2019;57(1):8–93. doi: 10.1016/j.ejvs.2018.09.020
- Jurgens PT, Carr JJ, Terry JG, et al. Association of abdominal aorta calcium and coronary artery calcium with incident cardiovascular and coronary heart disease events in black and white middle-aged people: The coronary artery risk development in young adults’ study. J Am Heart Assoc. 2021;10(24):e023037. doi: 10.1161/JAHA.121.023037
- Galiè N, Humbert M, Vachiery JL, et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The joint task force for the diagnosis and treatment of pulmonary hypertension of the European society of cardiology (ESC) and the European respiratory society (ERS): Endorsed by: Association for European paediatric and congenital cardiology (AEPC), International society for heart and lung transplantation (ISHLT). Eur Respir J. 2015;46(4):903–975. doi: 10.1183/13993003.01032-2015
- Agatston AS, Janowitz WR, Hildner FJ, et al. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol. 1990;15:(4):827–832. d oi: 10.1016/0735-1097(90)90282-t
- Belaya ZhE, Belova KYu, Biryukova EV, et al. Federal clinical guidelines for diagnosis, treatment and prevention of osteoporosis. Osteoporosis and Bone Diseases. 2021;24(2):4–47. EDN: TUONYE doi: 10.14341/osteo12930
- Genant HK, Jergas M. Assessment of prevalent and incident vertebral fractures in osteoporosis research. Osteoporosis Int. 2003;14 Suppl 3:S43–S55. doi: 10.1007/S00198-002-1348-1
- Spearman JV, Renker M, Schoepf UJ, et al. Prognostic value of epicardial fat volume measurements by computed tomography: a systematic review of the literature. Eur Radiol. 2015;25(11):3372–3381. doi: 10.1007/s00330-015-3765-5
- Cook S, Malyutina S, Kudryavtsev AV, et al. Know your heart: rationale, design and conduct of a cross-sectional study of cardiovascular structure, function and risk factors in 4500 men and women aged 35-69 years from two Russian cities. Wellcome Open Res. 2018;3:67. doi: 10.12688/wellcomeopenres.14619.3
- Mirolyubova O, Kholmatova K, Postoeva A, et al. Socio-demographic, lifestyle, and cardiometabolic characteristics associated with low-grade systemic inflammation in Russian adult population. Biomolecules. 2023;13(5):835. d oi: 10.3390/biom13050835
- Drapkina OM, Shalnova SA, Imaeva AE, et al. Epidemiology of cardiovascular diseases in regions of Russian Federation. Third survey (ESSE-RF-3). Rationale and study design. Cardiovascular Therapy and Prevention. 2022;21(5):48–57. d oi: 10.15829/1728-8800-2022-3246
- McClelland RL, Jorgensen NW, Budoff M, et al. 10-year coronary heart disease risk prediction using coronary artery calcium and traditional risk factors: derivation in the MESA (Multi-Ethnic Study of Atherosclerosis) with validation in the HNR (Heinz Nixdorf Recall) study and the DHS (Dallas Heart Study). J Am Coll Cardiol. 2015;66(15):1643–1653. d oi: 10.1016/j.jacc.2015.08.035
- Diagnostics and Telemedicine Center [Internet]. AIRA Labs LLC Chest-IRA. [cited 2024 Apr 17]. Available from: h ttps://mosmed.ai/service_catalog/chestira
- Morozov SP, Vladzimirskiy AV, Klyashtornyi VG, et al. Clinical trials of software based on intelligent technologies (radiation diagnostics): preprint No. CDT-2019-1. In: The best practices of radiation and instrumental diagnostics. Issue 23. Moscow: GBUZ "NPCC DiT DZM"; 2019. (In Russ.)
- Vladzimirskiy AV, Vasiliev YuA, Arzamasov КМ, et al. Computer vision in radiation diagnostics: the first stage of the Moscow experiment. Moscow: Izdatel'skie resheniya; 2023. (In Russ.) EDN: FOYLXK
- Ansah JP, Chiu CT. Projecting the chronic disease burden among the adult population in the United States using a multi-state population model. Front Public Health. 2023;10:1082183. doi: 10.3389/fpubh.2022.1082183
- Koene RJ, Prizment AE, Blaes A, Konety SH. Shared risk factors in cardiovascular disease and cancer. Circulation. 2016;133(11):1104–1114. d oi: 10.1161/CIRCULATIONAHA.115.020406
Supplementary files
