土壤重金属污染对神经系统疾病发生的影响
- 作者: Batyrova G.A.1, Umarova G.A.1, Urazayeva S.T.1, Sarsembin U.K.2, Issaldinova A.N.1, Taskozhina G.E.1, Issanguzhina Z.X.1, Umarov Y.A.1
-
隶属关系:
- West Kazakhstan Marat Ospanov Medical University
- K. Zhubanov Aktobe Regional University
- 期: 卷 32, 编号 7 (2025)
- 页面: 449-459
- 栏目: REVIEWS
- URL: https://journal-vniispk.ru/1728-0869/article/view/327431
- DOI: https://doi.org/10.17816/humeco643565
- EDN: https://elibrary.ru/ADYJZU
- ID: 327431
如何引用文章
详细
工业发达国家的人类活动导致土壤受到重金属污染,这些金属可在机体组织中累积并产生神经毒性作用。考虑到土壤中重金属累积所引发的严重生态问题及其对人体的毒性,本研究旨在分析现有科学数据,评估其对神经组织的病理性影响。为实现研究目的,对近五年公开数据库中的循证科学文献进行了整理和分析。 科学证据表明,镉、铬、铅和汞是最常见的污染土壤并产生神经毒性作用的金属。重金属在神经组织中的毒性通过多种机制介导,包括细胞周期紊乱、代谢过程破坏以及血脑屏障完整性受损。这些作用最终导致中枢神经系统结构的退行性改变。镉、铅、汞和铬干预神经系统的发育与功能,导致神经毒性效应,在急性中毒时可引起致死结局。对高风险社会群体开展金属中毒筛查,并在生态不利地区实施初级预防,是应对土壤重金属污染及其对人体不良影响的合理措施。
作者简介
Gulnara A. Batyrova
West Kazakhstan Marat Ospanov Medical University
编辑信件的主要联系方式.
Email: g.batyrova@zkmu.kz
ORCID iD: 0000-0001-7970-4059
SPIN 代码: 8584-5024
PhD
哈萨克斯坦, AktobeGulmira A. Umarova
West Kazakhstan Marat Ospanov Medical University
Email: uga_80@mail.ru
ORCID iD: 0000-0001-7637-113X
SPIN 代码: 9146-3959
PhD
哈萨克斯坦, AktobeSaltanat T. Urazayeva
West Kazakhstan Marat Ospanov Medical University
Email: s.urazaeva@mail.ru
ORCID iD: 0000-0002-4773-0807
MD, Cand. Sci. (Medicine)
哈萨克斯坦, AktobeUmbetali K. Sarsembin
K. Zhubanov Aktobe Regional University
Email: umbetali_s.k@mail.ru
ORCID iD: 0000-0002-0796-3737
PhD
哈萨克斯坦, AktobeAssel N. Issaldinova
West Kazakhstan Marat Ospanov Medical University
Email: aselisaldinova@gmail.com
ORCID iD: 0000-0003-4843-5823
Master of the Educational program
哈萨克斯坦, AktobeGulaim E. Taskozhina
West Kazakhstan Marat Ospanov Medical University
Email: g.taskozhina@zkmu.kz
ORCID iD: 0000-0003-3922-0054
PhD Student
哈萨克斯坦, AktobeZhamilia X. Issanguzhina
West Kazakhstan Marat Ospanov Medical University
Email: gamilia0452@gmail.com
ORCID iD: 0000-0002-7557-8486
MD, Cand. Sci. (Medicine)
哈萨克斯坦, AktobeYeskendir A. Umarov
West Kazakhstan Marat Ospanov Medical University
Email: eskendir.um@gmail.com
ORCID iD: 0000-0002-5661-4023
Master of the Natural Sciences
哈萨克斯坦, Aktobe参考
- Okereafor U, Makhatha M, Mekuto L, et al. Toxic metal implications on agricultural soils, plants, animals, aquatic life and human health. Int J Environ Res Public Health. 2020;17(7):2204. doi: 10.3390/ijerph17072204
- Bhat SA, Hassan T, Majid S. Heavy metal toxicity and their harmful effects on living organisms — a review. International Journal of Medical Science and Diagnosis Research. 2019;3(1):106–122.
- Mitra S, Chakraborty AJ, Tareq AM, et al. Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. Journal of King Saud University-Science. 2022;34(3):101865. doi: 10.1016/j.jksus.2022.101865
- Shen X, Dai M, Yang J, et al. A critical review on the phytoremediation of heavy metals from environment: performance and challenges. Chemosphere. 2022;291(Pt 3):132979. doi: 10.1016/j.chemosphere.2021.132979
- Briffa J, Sinagra E, Blundell R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon. 2020;6(9):e04691. doi: 10.1016/j.heliyon.2020.e04691
- Sall ML, Diaw AKD, Gningue-Sall D, et al. Toxic heavy metals: impact on the environment and human health, and treatment with conducting organic polymers, a review. Environ Sci Pollut Res Int. 2020;27(24):29927–29942. doi: 10.1007/s11356-020-09354-3
- Rahman Z, Singh VP. Bioremediation of toxic heavy metals (THMs) contaminated sites: concepts, applications and challenges. Environ Sci Pollut Res Int. 2020;27(22):27563–27581. doi: 10.1007/s11356-020-08903-0
- Zaynab M, Al-Yahyai R, Ameen A, et al. Health and environmental effects of heavy metals. Journal of King Saud University-Science. 2021;34(1):101653. doi: 10.1016/j.jksus.2021.101653
- Alengebawy A, Abdelkhalek ST, Qureshi SR, Wang MQ. Heavy metals and pesticides toxicity in agricultural soil and plants: ecological risks and human health implications. Toxics. 2021;9(3):42. doi: 10.3390/toxics9030042
- Ahmad W, Alharthy RD, Zubair M, et al. Toxic and heavy metals contamination assessment in soil and water to evaluate human health risk. Sci Rep. 2021;11(1):17006. doi: 10.1038/s41598-021-94616-4
- Ijomone OM, Ifenatuoha CW, Aluko OM, et al. The aging brain: impact of heavy metal neurotoxicity. Crit Rev Toxicol. 2020;50(9):801–814. doi: 10.1080/10408444.2020.1838441
- Rehman Q, Rehman K, Akash MSH. Heavy metals and neurological disorders: from exposure to preventive interventions. In: MSH Akash, K Rehman, editors. Environmental contaminants and neurological disorders. Emerging contaminants and associated treatment technologies. Springer, Cham; 2021. doi: 10.1007/978-3-030-66376-6_4
- Mehta I, Verma M, Quasmi MN, et al. Emerging roles of histone modifications in environmental toxicants-induced neurotoxicity. Toxicology. 2025;515:154164. doi: 10.1016/j.tox.2025.154164
- Kumar P. Heavy metal contamination causes protein misfolding, leading to neurodegenerative disorders. In: Protein Misfolding in Neurodegenerative Diseases. Academic Press; 2025. P. 463–492. ISBN: 978-0443187162
- Ijomone OK, Ukwubile II, Aneke VO, et al. Glial perturbation in metal neurotoxicity: implications for brain disorders. Neuroglia. 2025;6(1):4. doi: 10.3390/neuroglia6010004
- Althomali RH, Abbood MA, Saleh EAM, et al. Exposure to heavy metals and neurocognitive function in adults: a systematic review. Environ Sci Eur. 2024;36(1):18. doi: 10.1186/s12302-024-00843-7
- Chen J, Chen J, Li M, et al. Probabilistic assessment of the cumulative risk from dietary heavy metal exposure in Chongqing, China using a hazard-driven approach. Sci Rep. 2025;15(1):2229. doi: 10.1038/s41598-024-83299-2
- Fu Z, Xi S. The effects of heavy metals on human metabolism. Toxicol Mech Methods. 2020;30(3):167–176. doi: 10.1080/15376516.2019.1701594
- Chen S, Zhao R, Sun X, et al. Toxicity and biocompatibility of liquid metals. Adv Healthc Mater. 2023;12(3):e2201924. doi: 10.1002/adhm.202201924
- Prasad S, Yadav KK, Kumar S, et al. Chromium contamination and effect on environmental health and its remediation: a sustainable approaches. J Environ Manage. 2021;285:112174. doi: 10.1016/j.jenvman.2021.112174
- Alvarez CC, Bravo Gómez ME, Hernández Zavala A. Hexavalent chromium: regulation and health effects. J Trace Elem Med Biol. 2021;65:126729. doi: 10.1016/j.jtemb.2021.126729
- Chen L, Zhou M, Wang J, et al. A global meta-analysis of heavy metal(loid)s pollution in soils near copper mines: evaluation of pollution level and probabilistic health risks. Sci Total Environ. 2022;835:155441. doi: 10.1016/j.scitotenv.2022.155441
- Long Z, Huang Y, Zhang W, et al. Effect of different industrial activities on soil heavy metal pollution, ecological risk, and health risk. Environ Monit Assess. 2021;193(1):20. doi: 10.1007/s10661-020-08807-z
- Adimalla N, Chen J, Qian H. Spatial characteristics of heavy metal contamination and potential human health risk assessment of urban soils: a case study from an urban region of South India. Ecotoxicol Environ Saf. 2020;194:110406. doi: 10.1016/j.ecoenv.2020.110406
- Wang M, Chen Z, Song W, et al. A review on cadmium exposure in the population and intervention strategies against cadmium toxicity. Bull Environ Contam Toxicol. 2021;106(1):65–74. doi: 10.1007/s00128-020-03088-1
- WHO (2019). Preventing disease through healthy environments: exposure to cadmium: a major public health concern. World Health Organization; 2019. 6 р. URL: https://iris.who.int/bitstream/handle/10665/329480/WHO-CED-PHE-EPE-19.4.3-eng.pdf
- Suhani I, Sahab S, Srivastava V, Singh RP. Impact of cadmium pollution on food safety and human health. Current Opinion in Toxicology. 202;27:1–7. doi: 10.1016/j.cotox.2021.04.004
- Rizwan M, Ali S, Rehman MZU, Maqbool A. A critical review on the effects of zinc at toxic levels of cadmium in plants. Environ Sci Pollut Res Int. 2019;26(7):6279–6289. doi: 10.1007/s11356-019-04174-6
- Wu J, Mock HP, Giehl RFH, et al. Silicon decreases cadmium concentrations by modulating root endodermal suberin development in wheat plants. J Hazard Mater. 2019;364:581–590. doi: 10.1016/j.jhazmat.2018.10.052
- Andjelkovic M, Buha Djordjevic A, Antonijevic E, et al. Toxic effect of acute cadmium and lead exposure in rat blood, liver, and kidney. Int J Environ Res Public Health. 2019;16(2):274. doi: 10.3390/ijerph16020274
- Zhou R, Zhao J, Li D, et al. Combined exposure of lead and cadmium leads to the aggravated neurotoxicity through regulating the expression of histone deacetylase 2. Chemosphere. 2020;252:126589. doi: 10.1016/j.chemosphere.2020.126589
- Bi SS, Talukder M, Sun XT, et al. Cerebellar injury induced by cadmium via disrupting the heat-shock response. Environ Sci Pollut Res Int. 2023;30(9):22550–22559. doi: 10.1007/s11356-022-23771-6
- Branca JJV, Fiorillo C, Carrino D, et al. Cadmium-induced oxidative stress: focus on the central nervous system. Antioxidants (Basel). 2020;9(6):492. doi: 10.3390/antiox9060492
- Chandravanshi L, Shiv K, Kumar S. Developmental toxicity of cadmium in infants and children: a review. Environ Anal Health Toxicol. 2021;36(1):e2021003-0. doi: 10.5620/eaht.2021003
- Ruczaj A, Brzóska MM. Environmental exposure of the general population to cadmium as a risk factor of the damage to the nervous system: a critical review of current data. J Appl Toxicol. 2023;43(1):66–88. doi: 10.1002/jat.4322
- Mubeena Mariyath PM, Shahi MH, Tayyab M, et al. Cadmium-induced neurodegeneration and activation of noncanonical sonic hedgehog pathway in rat cerebellum. J Biochem Mol Toxicol. 2019;33(4):e22274. doi: 10.1002/jbt.22274
- Chouit Z, Djellal D, Haddad S, et al. Potentiation of the apoptotic signaling pathway in both the striatum and hippocampus and neurobehavioral impairment in rats exposed chronically to a low-dose of cadmium. Environ Sci Pollut Res Int. 2021;28(3):3307–3317. doi: 10.1007/s11356-020-10755-7
- Branca JJV, Maresca M, Morucci G, et al. Effects of cadmium on ZO-1 tight junction integrity of the blood brain barrier. Int J Mol Sci. 2019;20(23):6010. doi: 10.3390/ijms20236010
- Ge Y, Song X, Chen L, et al. Cadmium induces actin cytoskeleton alterations and dysfunction in Neuro-2a cells. Environ Toxicol. 2019;34(4):469–475. doi: 10.1002/tox.22700
- Polykretis P, Cencetti F, Donati C, et al. Cadmium effects on superoxide dismutase 1 in human cells revealed by NMR. Redox Biol. 2019;21:101102. doi: 10.1016/j.redox.2019.101102
- Kumar A, Kumar A, M M S CP, et al. Lead toxicity: health hazards, influence on food chain, and sustainable remediation approaches. Int J Environ Res Public Health. 2020;17(7):2179. doi: 10.3390/ijerph17072179
- Chandrasekhar C, Ray JG. Lead accumulation, growth responses and biochemical changes of three plant species exposed to soil amended with different concentrations of lead nitrate. Ecotoxicol Environ Saf. 2019;171:26–36. doi: 10.1016/j.ecoenv.2018.12.058
- Apte A, Bradford K, Dente C, Smith RN. Lead toxicity from retained bullet fragments: a systematic review and meta-analysis. J Trauma Acute Care Surg. 2019;87(3):707–716. doi: 10.1097/TA.0000000000002287
- Naranjo VI, Hendricks M, Jones KS. Lead toxicity in children: an unremitting public health problem. Pediatr Neurol. 2020;113:51–55. doi: 10.1016/j.pediatrneurol.2020.08.005
- Sawicki K, Czajka M, Matysiak-Kucharek M, et al. Toxicity of metallic nanoparticles in the central nervous system. Nanotechnology Reviews, 2019;8(1):175–200. doi: 10.1515/ntrev-2019-0017
- Pacyna JM. Recent advances in mercury research. Sci Total Environ. 2020;738:139955. doi: 10.1016/j.scitotenv.2020.139955
- Kim H, Lee J, Woo HD, et al. Dietary mercury intake and colorectal cancer risk: a case-control study. Clin Nutr. 2020;39(7):2106–2113. doi: 10.1016/j.clnu.2019.08.025
- Yang L, Zhang Y, Wang F, et al. Toxicity of mercury: Molecular evidence. Chemosphere. 2020;245:125586. doi: 10.1016/j.chemosphere.2019.125586
- Abbott LC, Nigussie F. Mercury Toxicity and neurogenesis in the mammalian brain. Int J Mol Sci. 2021;22(14):7520. doi: 10.3390/ijms22147520
- Yawei S, Jianhai L, Junxiu Z, et al. Epidemiology, clinical presentation, treatment, and follow-up of chronic mercury poisoning in China: a retrospective analysis. BMC Pharmacol Toxicol. 2021;22(1):25. doi: 10.1186/s40360-021-00493-y
- Zulaikhah ST, Wahyuwibowo J, Pratama AA. Mercury and its effect on human health: a review of the literature. Int J Public Health. 2020;9(2):103–114. doi: 10.11591/ijphs.v9i2.20416
- Du B, Yin R, Fu X, et al. Use of mercury isotopes to quantify sources of human inorganic mercury exposure and metabolic processes in the human body. Environ Int. 2021;147:106336. doi: 10.1016/j.envint.2020.106336
- Dórea JG. Neurotoxic effects of combined exposures to aluminum and mercury in early life (infancy). Environ Res. 2020;188:109734. doi: 10.1016/j.envres.2020.109734
- Pavesi T, Moreira JC. Mechanisms and individuality in chromium toxicity in humans. J Appl Toxicol. 2020;40(9):1183–1197. doi: 10.1002/jat.3965
- Ukhurebor KE, Aigbe UO, Onyancha RB, et al. Effect of hexavalent chromium on the environment and removal techniques: a review. J Environ Manage. 2021;280:111809. doi: 10.1016/j.jenvman.2020.111809
- Ma J, Yan L, Guo T, et al. Association of typical toxic heavy metals with schizophrenia. Int J Environ Res Public Health. 2019;16(21):4200. doi: 10.3390/ijerph16214200
- Wise Jr JP, Young JL, Cai J, Cai L. Current understanding of hexavalent chromium [Cr(VI)] neurotoxicity and new perspectives. Environ Int. 2022;158:106877. doi: 10.1016/j.envint.2021.106877
- Hossini H, Shafie B, Niri AD, et al. A comprehensive review on human health effects of chromium: insights on induced toxicity. Environ Sci Pollut Res Int. 2022;29(47):70686–70705. doi: 10.1007/s11356-022-22705-6
