Modern trends in the development of antifungal agents
- Authors: Avtonomova A.V.1,2, Kisil O.V.2, Zagainova A.V.1, Makarov V.V.1
-
Affiliations:
- Centre for Strategic Planning and Management of Biomedical Health Risk
- Gause Institute of New Antibiotics
- Issue: Vol 32, No 11 (2025)
- Pages: 763-774
- Section: REVIEWS
- URL: https://journal-vniispk.ru/1728-0869/article/view/362964
- DOI: https://doi.org/10.17816/humeco695458
- EDN: https://elibrary.ru/LXKNMC
- ID: 362964
Cite item
Full Text
Abstract
Mycoses pose an increasing threat to public health, resulting in millions of invasive infections and a high mortality rate each year. The limited arsenal of antifungal agents, their toxicity, and the rapid spread of resistance underscore the urgent need for new therapeutic strategies. This review systematizes current trends in the development of antimycotic agents intended for the treatment of invasive mycoses. The primary focus is on drugs with novel mechanisms of action targeting key structures and metabolic pathways of the fungal cell. The emphasis is on publications from the past decade; however, significant fundamental research from earlier times has also been taken into account. The search was conducted in the electronic databases eLibrary.ru, PubMed, Google Scholar, and Wally. Promising approaches include inhibition of cell wall component synthesis, disruption of cell membrane function through effects on ergosterol, phospholipids, and sphingolipids, as well as effects on intracellular targets: fungal intracellular proteins and signaling pathways, protein biosynthesis processes, and nucleic acid replication and transcription. Agents inhibiting the synthesis of major cell wall components such as β-1,3-glucan (echinocandins, ibrexafungerpY), β-1,6-glucan, chitin (nikkomycin ZY), and GPI anchors (fosmanogepixY), are reviewed. Agents acting on ergosterol (oteseconazoleY, opelconazoleY), sphingolipids (IPC-synthase inhibitorsY), and phospholipids (mandimycinY) are analyzed. Fungal kinase inhibitors, Hsp90, calcineurin, N-myristoyltransferase, elongation factor EF-2, and nucleic acids (olorofimY) are described. Several of these compounds (olorofimY, fosmanogepixY, VT-1598Y, BSG005) are currently in clinical trials. The importance of identifying selective targets and developing combination therapy to overcome resistance and improve treatment effectiveness is emphasized.
Y Hereafter, it means that the medicinal product is not registered in the Russian Federation.
About the authors
Anastasia V. Avtonomova
Centre for Strategic Planning and Management of Biomedical Health Risk; Gause Institute of New Antibiotics
Author for correspondence.
Email: aavtonomova@cspfmba.ru
ORCID iD: 0000-0001-5098-5379
SPIN-code: 4409-8108
Cand. Sci. (Biology)
Russian Federation, Moscow; MoscowOlga V. Kisil
Gause Institute of New Antibiotics
Email: olvv@mail.ru
ORCID iD: 0000-0003-4799-1318
SPIN-code: 1153-8414
Cand. Sci. (Chemistry)
Russian Federation, MoscowAngelica V. Zagainova
Centre for Strategic Planning and Management of Biomedical Health Risk
Email: azagaynova@cspfmba.ru
ORCID iD: 0000-0003-4772-9686
SPIN-code: 6642-7819
Cand. Sci. (Biology)
Russian Federation, MoscowValentin V. Makarov
Centre for Strategic Planning and Management of Biomedical Health Risk
Email: makarov@cspfmba.ru
ORCID iD: 0000-0001-9495-0266
SPIN-code: 7842-8808
Cand. Sci. (Biology)
Russian Federation, MoscowReferences
- Monk BC, Sagatova AA, Hosseini P, et al. Fungal lanosterol 14α-demethylase: a target for next-generation antifungal design. Biochim Biophys Acta Proteins Proteom. 2020;1868(3):140206. doi: 10.1016/j.bbapap.2019.02.008 EDN: IZPYUA
- Fesel PH, Zuccaro A. β-glucan: Crucial component of the fungal cell wall and elusive MAMP in plants. Fungal Genet Biol. 2016;90:53–60. doi: 10.1016/j.fgb.2015.12.004
- Curto MÁ, Butassi E, Ribas JC, et al. Natural products targeting the synthesis of β(1,3)-D-glucan and chitin of the fungal cell wall. Existing drugs and recent findings. Phytomedicine. 2021;88:153556. doi: 10.1016/j.phymed.2021.153556
- Emri T, Majoros L, Tóth V, Pócsi I. Echinocandins: production and applications. Appl Microbiol Biotechnol. 2013;97(8):3267–3284. doi: 10.1007/s00253-013-4761-9
- Sofjan AK, Mitchell A, Shah DN, et al. Rezafungin (CD101), a next-generation echinocandin: A systematic literature review and assessment of possible place in therapy. J Glob Antimicrob Resist. 2018;14:58–64. doi: 10.1016/j.jgar.2018.02.013
- Li Y, Lan N, Xu L, Yue Q. Biosynthesis of pneumocandin lipopeptides and perspectives for its production and related echinocandins. Appl Microbiol Biotechnol. 2018;102(23):9881–9891. doi: 10.1007/s00253-018-9382-x
- Jiang K, Luo P, Wang X, Lu L. Insight into advances for the biosynthetic progress of fermented echinocandins of antifungals. Microb Biotechnol. 2024;17(1):e14359. doi: 10.1111/1751-7915.14359
- Helmy NM, Parang K. Cyclic peptides with antifungal properties derived from bacteria, fungi, plants, and synthetic sources. Pharmaceuticals. 2023;16(6):892. doi: 10.3390/ph16060892
- Vicente F, Reyes F, Genilloud O. Fungerps: discovery of the glucan synthase inhibitor enfumafungin and development of a new class of antifungal triterpene glycosides. Nat Prod Rep. 2024;41(12):1835–1845. doi: 10.1039/d4np00044g
- Aderiye BI, Oluwole OA. Antifungal agents that target fungal cell wall components: a review. Agri Biol Sci. 2015;1(5):206–216.
- Onishi J, Meinz M, Thompson J, et al. Discovery of novel antifungal (1,3)-beta-D-glucan synthase inhibitors. Antimicrob Agents Chemother. 2000;44(2):368–377. doi: 10.1128/AAC.44.2.368-377.2000
- Zhang CW, Zhong XJ, Zhao YuS, et al. Antifungal natural products and their derivatives: a review of their activity and mechanism of actions. Pharmacol. Res.-Mod. Chin. Med. 2023;7:100262. doi: 10.1016/j.prmcm.2023.100262
- Martins IM, Cortés JC, Muñoz J, et al. Differential activities of three families of specific beta(1,3)glucan synthase inhibitors in wild-type and resistant strains of fission yeast. J Biol Chem. 2011;286(5):3484–3496. doi: 10.1074/jbc.M110.174300
- Lu Y, Duan MH, Zhao X, et al. Pestiorosins A–F, New Papulacandins isolated from the fungus Pestalotiopsis rosea YNJ21. Chem Biodivers. 2025;22(1):e202401921. doi: 10.1002/cbdv.202401921
- Roemer T, Delaney S, Bussey H. SKN1 and KRE6 Define a pair of functional homologs encoding putative membrane proteins involved in β-Glucan synthesis. Mol Cell Biol. 1993;13(7):4039–4048. doi: 10.1128/mcb.13.7.4039-4048.1993
- Kitamura A, Higuchi S, Hata M, et al. Effect of beta-1,6-glucan inhibitors on the invasion process of Candida albicans: potential mechanism of their in vivo efficacy. Antimicrob Agents Chemother. 2009;53(9):3963–3971. doi: 10.1128/AAC.00435-09
- Roncero C, Sanchez-Diaz A, Valdivieso MH. Chitin synthesis and fungal cell morphogenesis. In: Hoffmeister D, editor. Biochemistry and molecular biology. Vol. III. Cham: Springer International Publishing; 2016. P. 167–190. doi: 10.1007/978-3-319-27790-5_9
- Larwood DJ. Nikkomycin Z—ready to meet the promise? J. Fungi. 2020;6(4):261. doi: 10.3390/jof6040261
- Ibe C, Munro CA. Fungal cell wall: An underexploited target for antifungal therapies. PLoS Pathog. 2021;17(4):e1009470. doi: 0.1371/journal.ppat.1009470
- Shubitz LF, Trinh HT, Perrill RH, et al. Modeling nikkomycin Z dosing and pharmacology in murine pulmonary coccidioidomycosis preparatory to phase 2 clinical trials. J Infect Dis. 2014;209(12):1949–1954. doi: 10.1093/infdis/jiu029
- Richard ML, Plaine A. Comprehensive analysis of glycosylphosphatidylinositol-anchored proteins in candida albicans. Eukaryot Cell. 2007;6(2):119–133. doi: 10.1128/EC.00297-06
- Hoenigl M, Sprute R, Egger M, et al. The antifungal pipeline: fosmanogepix, ibrexafungerp, olorofim, opelconazole, and rezafungin. Drugs. 2021;81(15):1703–1729. doi: 10.1007/s40265-021-01611-0
- Miyazaki M, Horii T, Hata K, et al. In vitro activity of E1210, a novel antifungal, against clinically important yeasts and molds. Antimicrob Agents Chemother. 2011;55(10):4652–4658. doi: 10.1128/AAC.00291-11
- Watanabe N, Miyazaki M, Horii T, et al. E1210, a new broad-spectrum antifungal, suppresses candida albicans hyphal growth through inhibition of glycosylphosphatidylinositol biosynthesis. Antimicrob Agents Chemother. 2012;56(2):960–971. doi: 10.1128/AAC.00731-11
- Shaw KJ, Ibrahim AS. Fosmanogepix: A review of the first-in-class broad spectrum agent for the treatment of invasive fungal infections. J. Fungi. 2020;6(4):239. doi: 10.3390/jof6040239
- Ruiz-Herrera J, Elorza MV, Valentín E, Sentandreu R. Molecular organization of the cell wall of candida albicans and its relation to pathogenicity. FEMS Yeast Res. 2006;6(1):14–29. doi: 10.1111/j.1567-1364.2005.00017.x
- Miyanishi W, Ojika M, Akase D, et al. D-Mannose Binding, aggregation property, and antifungal activity of amide derivatives of Pradimicin A. Bioorg Med Chem. 2022;55:116590. doi: 10.1016/j.bmc.2021.116590
- Pan J, Hu C, Yu JH. Lipid biosynthesis as an antifungal target. J Fungi. 2018;4(2):50. doi: 10.3390/jof4020050
- Campoy S, Adrio JL. Antifungals. Biochem Pharmacol. 2017;133:86–96. doi: 10.1016/j.bcp.2016.11.019
- Sousa F, Nascimento C, Ferreira D, et al. Reviving the interest in the versatile drug Nystatin: a multitude of strategies to increase its potential as an effective and safe antifungal agent. Adv Drug Deliv Rev. 2023;199:114969. doi: 10.1016/j.addr.2023.114969
- Kantarcioglu AS, Yucel A, Vidotto V. In vitro activity of a new polyene SPK-843 against Candida spp, Cryptococcus neoformans and Aspergillus spp clinical isolates. J Chemother. 2003;15(3):296–298. doi: 10.1179/joc.2003.15.3.296
- Kakeya H, Miyazaki Y, Senda H, et al. Efficacy of SPK-843, a novel polyene antifungal, in comparison with Amphotericin B, Liposomal Amphotericin B, and Micafungin against murine pulmonary aspergillosis. Antimicrob Agents Chemother. 2008;52(5):1868–1870. doi: 10.1128/AAC.01369-07
- Wiederhold NP. The antifungal arsenal: alternative drugs and future targets. Int J Antimicrob Agents. 2018;51(3):333–339. doi: 10.1016/j.ijantimicag.2017.09.002
- Sobel JD, Donders G, Degenhardt T, et al. Efficacy and safety of Oteseconazole in recurrent vulvovaginal candidiasis. NEJM Evid. 2022;1(8):EVIDoa2100055. doi: 10.1056/EVIDoa2100055
- Lockhart SR, Fothergill AW, Iqbal N, et al. The investigational fungal Cyp51 inhibitor VT-1129 demonstrates potent in vitro activity against Cryptococcus neoformans and Cryptococcus gattii. Antimicrob Agents Chemother. 2016;60(4):2528–2531. doi: 10.1128/AAC.02770-15
- Schell WA, Jones AM, Garvey EP, et al. Fungal CYP51 inhibitors VT-1161 and VT-1129 exhibit strong in vitro activity against Candida glabrata and C. krusei isolates clinically resistant to azole and echinocandin antifungal compounds. Antimicrob Agents Chemother. 2017;61(3):e01817–16. doi: 10.1128/AAC.01817-16
- Wiederhold NP, Patterson HP, Tran BH, et al. Fungal-specific Cyp51 inhibitor VT-1598 demonstrates in vitro activity against candida and Cryptococcus species, endemic fungi, including Coccidioides species, Aspergillus species and Rhizopus Arrhizus. J Antimicrob Chemother. 2018;73(2):404–408. doi: 10.1093/jac/dkx410
- Neoh CF, Jeong W, Kong DC, Slavin MA. The antifungal pipeline for invasive fungal diseases: what does the future hold? Expert Rev Anti Infect Ther. 2023;21(6):577–594. doi: 10.1080/14787210.2023.2203383
- Sagatova AA. Strategies to better target fungal squalene monooxygenase. J Fungi. 2021;7(1):49. doi: 10.3390/jof7010049
- Deng Q, Li Y, He W, et al. A polyene macrolide targeting phospholipids in the fungal cell membrane. Nature. 2025;640(8059):743–751. doi: 10.1038/s41586-025-08678-9
- Mor V, Rella A, Farnoud AM, et al. Identification of a new class of antifungals targeting the synthesis of fungal sphingolipids. mBio. 2015;6(3):e00647. doi: 10.1128/mBio.00647-15
- Zhen C, Lu H, Jiang Y. Novel promising antifungal target proteins for conquering invasive fungal infections. Front Microbiol. 2022;13:911322. doi: 10.3389/fmicb.2022.911322
- Wu X, Gong X, Xie T. Mechanisms of aureobasidin A inhibition and drug resistance in a fungal IPC synthase complex. Nat Commun. 2025;16(1):5010. doi: 10.1038/s41467-025-60423-y
- Mandala SM, Thornton RA, Rosenbach M, et al. Khafrefungin, a novel inhibitor of sphingolipid synthesis. J Biol Chem. 1997;272(51):32709–32714. doi: 10.1074/jbc.272.51.32709
- Iyer KR, Li SC, Revie NM, et al. Identification of triazenyl indoles as inhibitors of fungal fatty acid biosynthesis with broad-spectrum activity. Cell Chem Biol. 2023;30(7):795–810.e8. doi: 10.1016/j.chembiol.2023.06.005
- Laakso JA, Raulli R, McElhaney-Feser GE, et al. CT2108A and B: new fatty acid synthase inhibitors as antifungal agents. J Nat Prod. 2003;66(8):1041–1046. doi: 10.1021/np030046g
- Blankenship JR, Fanning S, Hamaker JJ, Mitchell AP. An extensive circuitry for cell wall regulation in Candida albicans. PLoS Pathog. 2010;6(2):e1000752. doi: 10.1371/journal.ppat.1000752
- Reinoso-Martín C, Schüller C, Schuetzer-Muehlbauer M, Kuchler K. The yeast protein kinase C cell integrity pathway mediates tolerance to the antifungal drug caspofungin through activation of Slt2p mitogen-activated protein kinase signaling. Eukaryot Cell. 2003;2(6):1200–1210. doi: 10.1128/EC.2.6.1200-1210.2003
- Jung SI, Rodriguez N, Irrizary J, et al. Yeast casein kinase 2 governs morphology, biofilm formation, cell wall integrity, and host cell damage of Candida albicans. PLoS One. 2017;12(11):e0187721. doi: 10.1371/journal.pone.0187721
- Puumala E, Nandakumar M, Yiu B, et al. Structure-guided optimization of small molecules targeting Yck2 as a strategy to combat Candida albicans. Nat Commun. 2025;16(1):2156. doi: 10.1038/s41467-025-57346-z
- Robbins N, Uppuluri P, Nett J, et al. Hsp90 governs dispersion and drug resistance of fungal biofilms. PLoS Pathog. 2011;7(9):e1002257. doi: 10.1371/journal.ppat.1002257
- Yuan R, Tu J, Sheng C, et al. Effects of Hsp90 inhibitor ganetespib on inhibition of azole-resistant Candida albicans. Front Microbiol. 2021;12:680382. doi: 10.3389/fmicb.2021.680382
- Tu B, Yin G, Li H. Synergistic effects of vorinostat (SAHA) and azoles against Aspergillus species and their biofilms. BMC Microbiol. 2020;20(1):28. doi: 10.1186/s12866-020-1718-x
- Zheng YQ, Pan KS, Latgé JP, et al Calcineurin A is essential in the regulation of asexual development, stress responses and pathogenesis in Talaromyces marneffei. Front Microbiol. 2020;10:3094. doi: 10.3389/fmicb.2019.03094
- Steinbach WJ, Cramer RA Jr, Perfect BZ, et al. Calcineurin controls growth, morphology, and pathogenicity in Aspergillus fumigatus. Eukaryot Cell. 2006;5(7):1091–1103. doi: 10.1128/EC.00139-06
- Rivera A, Young Lim W, Park E, et al. Enhanced fungal specificity and in vivo therapeutic efficacy of a C-22-modified FK520 analog against C. neoformans. mBio. 2023;14(5):e0181023. doi: 10.1128/mbio.01810-23
- Ballou LM, Lin RZ. Rapamycin and mTOR kinase inhibitors. J Chem Biol. 2008;1(1-4):27–36. doi: 10.1007/s12154-008-0003-5
- Utsumi T, Matsuzaki K, Kiwado A, et al. Identification and characterization of protein Nmyristoylation occurring on four human mitochondrial proteins, SAMM50, TOMM40, MIC19, and MIC25. PLoS ONE. 2018;13(11):e0206355. doi: 10.1371/journal.pone.0206355
- Javid S, Ather H, Hani U, et al. Discovery of novel myristic acid derivatives as n-myristoyltransferase inhibitors: design, synthesis, analysis, computational studies and antifungal activity. Antibiotics. 2023;12(7):1167. doi: 10.3390/antibiotics12071167
- Yeates C. Icofungipen (PLIVA). Curr Opin Investig Drugs. 2005;6(8):838–844.
- Shao Y, Molestak E, Su W, et al. Sordarin — an anti-fungal antibiotic with a unique modus operandi. Br J Pharmacol. 2022;179(6):1125–1145. doi: 10.1111/bph.15724
- Parish CA, Smith SK, Calati K, et al. Isolation and structure elucidation of parnafungins, antifungal natural products that inhibit mRNA polyadenylation. J Am Chem Soc. 2008;130(22):7060–7066. doi: 10.1021/ja711209p
- Qiao J, Gao P, Jiang X, Fang H. In vitro antifungal activity of farnesyltransferase inhibitors against clinical isolates of Aspergillus and Candida. Ann Clin Microbiol Antimicrob. 2013;12:37. doi: 10.1186/1476-0711-12-37
- du Pre S., Birch M., Law D., et al. The dynamic influence of Olorofim (F901318) on the cell morphology and organization of living cells of Aspergillus fumigatus. J Fungi. 2020;6:47. doi: 10.3390/jof6020047
- Wiederhold NP. Pharmacodynamics, mechanisms of action and resistance, and spectrum of activity of new antifungal agents. J Fungi. 2022;8(8):857. doi: 10.3390/jof8080857
- Odds FC. Genomics, molecular targets and the discovery of antifungal drugs. Rev Iberoam Micol. 2005;22(4):229–237. doi: 10.1016/s1130-1406(05)70048-6
- Gabriel I. 'Acridines' as new horizons in antifungal treatment. Molecules. 2020;25(7):1480. doi: 3390/molecules25071480
Supplementary files

