Identification of potential probiotic cultures from the Samara region soils

Cover Page

Full Text

Abstract

BACKGROUND: Probiotics exert diverse beneficial effects on the human body; probiotic preparations restore the normobiota of the gastrointestinal mucosa and exhibit immunomodulatory properties. Dairy products are the most extensively studied sources of probiotic cultures. Recently, however, active efforts have been directed toward the search for probiotic strains. Soil, as an ecosystem with the greatest microbial biodiversity, represents a promising source.

AIM: This work aimed to analyze the diversity of microorganism species in soils of the Samara Region and to describe the main groups of potentially probiotic microorganisms.

METHODS: A microbiological assessment of agricultural soils was performed. A total of 75 soil samples were collected. The following culture media were used for bacteriological analysis: universal chromogenic agar, Mueller–Hinton agar supplemented with 5% sheep blood, Middlebrook agar, Rogosa agar, mannitol salt agar, agar for isolation of Brucella spp., agar for isolation of the Burkholderia cepacian complex, xylose lysine deoxycholate agar, cetrimide agar, Ashby glucose agar, agar for isolation of Clostridium spp., anaerobic agar, Reddy differential agar, Sabouraud agar, and granulated Czapek–Dox agar. Samples were plated using the Drigalski method. Microbial colonies were identified by MALDI-TOF mass spectrometry using a Microflex LT instrument.

RESULTS: In all soil samples, major representatives of microorganisms typically inhabiting the human gastrointestinal tract and used as probiotics were detected: Bacillus, Bifidobacterium, Enterococcus, Lactobacillus, Ligilactobacillus, and Streptococcus. Forty-five Bacillus species were identified. Among Lactobacillus species, L. jenseni and L. sakei were most frequently detected (in 50.7% of samples), followed by L. plantarum (46.7%). Ligilactobacillus agilis was the most frequently detected species (32% of samples); another important probiotic microorganism, Lig. salivarius, was isolated in 24% of samples. Enterococcus faecium was detected in 68% of samples. Although Streptococcus species are not typical representatives of the human gastrointestinal microbiota, Str. salivarius, identified in 4% of samples, is a dominant component of the normal oral microbiota throughout human life.

CONCLUSION: The obtained data indicate that microorganisms identified in soil samples may be used for the development of new probiotic preparations. Most of these microorganisms (Bacillus, Bifidobacterium, Enterococcus, Lactobacillus, Ligilactobacillus) are already applied in clinical practice for the treatment of gastrointestinal diseases.

About the authors

Olga V. Sazonova

Samara State Medical University

Email: o.v.sazonova@samsmu.ru
ORCID iD: 0000-0002-4130-492X
SPIN-code: 1789-6104

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Samara

Artem V. Lyamin

Samara State Medical University

Email: a.v.lyamin@samsmu.ru
ORCID iD: 0000-0002-5905-1895
SPIN-code: 6607-8990

MD, Dr. Sci. (Medicine), Associate Professor

Russian Federation, Samara

Dariya S. Tupikova

Samara State Medical University

Author for correspondence.
Email: d.s.tupikova@samsmu.ru
ORCID iD: 0000-0003-2813-7271
SPIN-code: 3234-9993

MD, Cand. Sci. (Medicine)

Russian Federation, Samara

Aleksey S. Sustretov

Samara State Medical University

Email: a.s.sustretov@samsmu.ru
ORCID iD: 0000-0002-3021-2130
SPIN-code: 9001-7233
Russian Federation, Samara

Elena A. Zakharova

Samara State Medical University

Email: e.a.zakharova@samsmu.ru
ORCID iD: 0000-0003-0012-5762
SPIN-code: 7123-5503
Russian Federation, Samara

Karim A. Kaiumov

Samara State Medical University

Email: k.a.kayumov@samsmu.ru
ORCID iD: 0000-0002-9614-7255
SPIN-code: 3614-7790
Russian Federation, Samara

Dmitriy V. Alekseev

Samara State Medical University

Email: d.v.alekseev@samsmu.ru
ORCID iD: 0000-0002-8864-4956
SPIN-code: 6991-8918
Russian Federation, Samara

References

  1. Barylnik YuB, Shuldyakov AA, Filippova NV, Ramazanova KKh. Human intestinal microbiome and mental health: state of the problem. Russian Journal of Psychiatry. 2015;(3):30–41. EDN: UCJIDR
  2. Usenko DV, Gorelov AV. Use of probiotics and probiotic products: possibilities and prospects Current Pediatrics. 2004;3(2):50–54. EDN: PCEPUN
  3. Kirpichenka AA, Kim IYu. Psychobiotics: can gut microbiota influence host's mental health? Vitebsk Medical Journal. 2017;16(2):26–42. doi: 10.22263/2312-4156.2017.2.26 EDN: YLJIZH
  4. Wikoff WR, Anfora AT, Liu J, et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci USA. 2009;106(10):3698–3703. doi: 10.1073/pnas.0812874106
  5. O'Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep. 2006;7(7):688–693. doi: 10.1038/sj.embor.7400731
  6. Linz B, Balloux F, Moodley Y, et al. An African origin for the intimate association between humans and Helicobacter pylori. Nature. 2007;445(7130):915–918. doi: 10.1038/nature05562
  7. Holzapfel WH. Appropriate starter culture technologies for small-scale fermentation in developing countries. Int J Food Microbiol. 2002;75(3):197–212. doi: 10.1016/s0168-1605(01)00707-3
  8. Lee IC, van Swam II, Boeren S, et al. Lipoproteins contribute to the anti-inflammatory capacity of lactobacillus plantarum WCFS1. Front Microbiol. 2020;11:1822. doi: 10.3389/fmicb.2020.01822
  9. Rook GA, Lowry CA, Raison CL. Microbial 'Old Friends', immunoregulation and stress resilience. Evol Med Public Health. 2013;2013(1):46–64. doi: 10.1093/emph/eot004
  10. Comas I, Coscolla M, Luo T, et al. Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat Genet. 2013;45(10):1176–1182. doi: 10.1038/ng.2744
  11. Patent RUS № 2807931 C1. 21.11.2023. Byul. № 33. Liamin AV, Orlova LV, Doronina EG, et al. Method of collecting soil samples for microbiological studies. Available from: https://www.elibrary.ru/download/elibrary_56017091_25653817.PDF EDN: MFQLHU
  12. Zielińska D, Kolożyn-Krajewska D. Food-origin lactic acid bacteria may exhibit probiotic properties: review. Biomed Res Int. 2018;2018:5063185. doi: 10.1155/2018/5063185
  13. Rook GAW. The old friends hypothesis: evolution, immunoregulation and essential microbial inputs. Front Allergy. 2023;4:1220481. doi: 10.3389/falgy.2023.1220481
  14. Rook GA, Raison CL, Lowry CA. Microbiota, immunoregulatory old friends and psychiatric disorders. Adv Exp Med Biol. 2014;817:319–356. doi: 10.1007/978-1-4939-0897-4_15
  15. Zawistowska-Rojek A, Tyski S. Are probiotic really safe for humans? Pol J Microbiol. 2018;67(3):251–258. doi: 10.21307/pjm-2018-044
  16. Kiseleva EP, Mikhailopulo KI, Sviridov OV, et al. The role of components of Bifidobacterium and Lactobacillus in pathogenesis and serologic diagnosis of autoimmune thyroid diseases. Benef Microbes. 2011;2(2):139–154. doi: 10.3920/BM2010.0011 EDN: PEAWGR
  17. Kouhounde S, Adéoti K, Mounir M, et al. Applications of probiotic-based multi-components to human, animal and ecosystem health: concepts, methodologies, and action mechanisms. Microorganisms. 2022;10(9):1700. doi: 10.3390/microorganisms10091700
  18. Suman J, Rakshit A, Ogireddy SD, et al. Microbiome as a key player in sustainable agriculture and human health. Front Soil Sci. 2022;2:821589. doi: 10.3389/fsoil.2022.821589
  19. Molino S, Lerma-Aguilera A, Jiménez-Hernández N, et al. Evaluation of the effects of a short supplementation with tannins on the gut microbiota of healthy subjects. Front Microbiol. 2022;13:848611. doi: 10.3389/fmicb.2022.848611
  20. Khairul SR, Leong SS, Korel F, et al. Systematic review of emerging trends in soil-based probiotic. Malaysian Journal of Soil Science. 2024;28:369–381.
  21. Mohkam M, Nezafat N, Berenjian A, et al. Identification of Bacillus probiotics isolated from soil rhizosphere using 16S rRNA, recA, rpoB gene sequencing and RAPD-PCR. Probiotics Antimicrob Proteins. 2016;8(1):8–18. doi: 10.1007/s12602-016-9208-z
  22. Shenderov BA. Metabiotics: novel idea or natural development of probiotic conception. Microb Ecol Health Dis. 2013;24(1):20399. doi: 10.3402/mehd.v24i0.20399 EDN: KABTXS
  23. Zhang W, Wu S, Jho EH, et al. From soil to the intestinal tract: The key role of beneficial elements and probiotics in promoting health and longevity. J Environ Manage. 2025;384:125611. doi: 10.1016/j.jenvman.2025.125611
  24. Semenov MV, Nikitin DA, Stepanov AL, Semenov VM. The structure of bacterial and fungal communities in the rhizosphere and root-free loci of gray forest soil. Pochvovedenie, 2019;(3):355–369. doi: 10.1134/S0032180X19010131 EDN: YXCDID
  25. van Reenen CA, Dicks LM. Horizontal gene transfer amongst probiotic lactic acid bacteria and other intestinal microbiota: what are the possibilities? A review. Arch Microbiol. 2011;193(3):157–168. doi: 10.1007/s00203-010-0668-3
  26. Shen F, Wang Q, Ullah S, et al. Ligilactobacillus acidipiscis YJ5 modulates the gut microbiota and produces beneficial metabolites to relieve constipation by enhancing the mucosal barrier. Food Funct. 2024;15(1):310–325. doi: 10.1039/d3fo03259k
  27. Cherevina EA, Stepycheva NV. The role of probiotics in maintaining the formation of cells of the intestinal immune system. In Situ. 2022;(11):143–147. EDN: IYSAUM
  28. Hempel S, Newberry S, Ruelaz A, et al. Safety of probiotics used to reduce risk and prevent or treat disease. Evid Rep Technol Assess (Full Rep). 2011;(200):1–645
  29. Guilherme L, Kalil J, Cunningham M. Molecular mimicry in the autoimmune pathogenesis of rheumatic heart disease. Autoimmunity. 2006;39(1):31–39. doi: 10.1080/08916930500484674
  30. Trukhan DI. Disorders of intestinal microbiocenosis: expanding the application of probiotics. Medical Council. 2022;16(7):132–143. doi: 10.21518/2079-701X-2022-16-7-132-143 EDN: PPPFVQ
  31. Al-Fakhrany OM, Elekhnawy E. Next-generation probiotics: the upcoming biotherapeutics. Mol Biol Rep. 2024;51(1):505. doi: 10.1007/s11033-024-09398-5
  32. Jeżewska-Frąckowiak J, Seroczyńska K, Banaszczyk J, et al. The promises and risks of probiotic Bacillus species. Acta Biochim Pol. 2018;65(4):509–519. doi: 10.18388/abp.2018_2652
  33. Ma J, Lyu Y, Liu X, et al. Engineered probiotics. Microb Cell Fact. 2022;21(1):72. doi: 10.1186/s12934-022-01799-0
  34. Mattoo R, Mallikarjuna S. Soil microbiome influences human health in the context of climate change. Future Microbiol. 2023;18:845–859. doi: 10.2217/fmb-2023-0098
  35. Blum WEH, Zechmeister-Boltenstern S, Keiblinger KM. Does soil contribute to the human gut microbiome? Microorganisms. 2019;7(9):287. doi: 10.3390/microorganisms7090287
  36. Yin HC, Jiang DH, Yu TF, et al. Characterization and functionality of Ligilactobacillus agilis 1003 isolated from chicken cecum against Klebsiella pneumoniae. Front Cell Infect Microbiol. 2024;14:1432422. doi: 10.3389/fcimb.2024.1432422
  37. O'Donnell MM, Harris HM, Lynch DB, et al. Lactobacillus ruminis strains cluster according to their mammalian gut source. BMC Microbiol. 2015;15:80. doi: 10.1186/s12866-015-0403-y
  38. Carbonne C, Chadi S, Kropp C, et al. Ligilactobacillus salivarius CNCM I-4866, a potential probiotic candidate, shows anti-inflammatory properties in vitro and in vivo. Front Microbiol. 2023;14:1270974. doi: 10.3389/fmicb.2023.1270974
  39. Zuany-Amorim C, Sawicka E, Manlius C, et al. Suppression of airway eosinophilia by killed Mycobacterium vaccae-induced allergen-specific regulatory T-cells. Nat Med. 2002;8(6):625–629. doi: 10.1038/nm0602-625
  40. Riva V, Mapelli F, Bagnasco A, et al. A meta-analysis approach to defining the culturable core of plant endophytic bacterial communities. Appl Environ Microbiol. 2022;88(6):e0253721. doi: 10.1128/aem.02537-21
  41. Soares A, Edwards A, An D, et al. A global perspective on bacterial diversity in the terrestrial deep subsurface. Microbiology (Reading). 2023;169(1):001172. doi: 10.1099/mic.0.001172
  42. Savlevich EL, Doroshchenko NE, Zharkikh MA, et al. Correction of halitosis in chronic inflammatory diseases of the oropharynx in adults. Russian Bulletin of Otorhinolaryngology. 2021;86(6):42–46. doi: 10.17116/otorino20218606141 EDN: SKUBFZ
  43. Ben Braïek O, Smaoui S. Enterococci: between emerging pathogens and potential probiotics. Biomed Res Int. 2019;2019:5938210. doi: 10.1155/2019/5938210
  44. Kudinova AG, Petrova MA, Soina VS, Maksakova SA. Basic antibiotic resistance of bacteria isolated from different biotopes. Pochvovedenie. 2019;88(6):695–704. doi: 10.1134/S0026365619050094 EDN: ADMWIM
  45. Harutyunyan N, Kushugulova A, Hovhannisyan N, Pepoyan A. One health probiotics as biocontrol agents: one health tomato probiotics. Plants (Basel). 2022;11(10):1334. doi: 10.3390/plants11101334 EDN: TPAGDO
  46. Sabater C, Neacsu M, Duncan SH. Harnessing beneficial soil bacteria to promote sustainable agriculture and food security: a one health perspective. Front Microbiol. 2025;16:1638553. doi: 10.3389/fmicb.2025.1638553
  47. Gwiazdowski R, Kubiak K, Jus K. The biocontrol of plant pathogenic fungi by selected lactic acid bacteria: from laboratory to field study. Agriculture. 2024;14(1):61; doi: 10.3390/agriculture14010061

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2026 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).