Impact of heat waves and cold spells on mortality in cities located in the Russian Arctic macroregion
- 作者: Shaposhnikov D.A.1, Revich B.A.1
-
隶属关系:
- Institute of Economic Forecasting, Russian Academy of Sciences
- 期: 卷 30, 编号 4 (2023)
- 页面: 287-300
- 栏目: ORIGINAL STUDY ARTICLES
- URL: https://journal-vniispk.ru/1728-0869/article/view/254623
- DOI: https://doi.org/10.17816/humeco111013
- ID: 254623
如何引用文章
全文:
详细
BACKGROUND: Climate warming in Russia is most pronounced in the Arctic, where it is accompanied by an increase in the frequency and duration of heat waves. This emerging risk factor for the health of the population in major cities has not yet received adequate scientific attention. To effectively plan for adaptation to these phenomena, it is crucial to understand their specific impacts in regions with different climate types. Therefore, comprehensive analysis of the associations between climatic factors and health is needed for informed decision-making and strategic adaptation planning.
AIM: To assess the impact of heat waves and cold spells on excess age-specific mortality within the urban populations of the Arctic macroregion. Furthermore, we analyzed the potential differences in the studied outcomes across climate types, ranging from marine to continental.
METHODS: We analyzed the daily counts of deaths in Arkhangelsk, Magadan, Murmansk, and Yakutsk from 1999 through 2019. Poisson generalized linear regression models were employed to determine the relative mortality risks during heat waves and cold spells. All models accounted for potential lagged effects, seasonal and weekly patterns, and long-term mortality trends. Pearson’s chi-squared tests were used to study the differences between the effects of heat and cold, as well as site-specific and age-specific variations in mortality.
RESULTS: Effects of the studied climatic phenomena were more pronounced in continental — than in marine climate. The age group 65+ years was more susceptible to the effects of extreme heat and cold than the middle-age group. Cold spells had a greater impact on the health of the residents of Murmansk, Arkhangelsk, and Magadan than heat waves, while the opposite was observed in Yakutsk. Cerebrovascular mortality during heath waves was 1.69 (95% CI: 1.34–2.13) times as high as during periods with normal temperature in the age-group 65+ in Yakutsk while cold spells were associated with 1.54 (95% CI: 1.18–2.01) greater risk of death from respiratory causes in the same age-group in Arkhangelsk.
CONCLUSION: Our findings can be utilized by public health authorities to effectively prevent further fatalities among subarctic populations during heatwaves and cold spells.
作者简介
Dmitry Shaposhnikov
Institute of Economic Forecasting, Russian Academy of Sciences
Email: dshap2014@gmail.com
ORCID iD: 0000-0001-9191-1974
SPIN 代码: 8513-7517
Cand. Sci. (Phys. and Math.)
俄罗斯联邦, 47 Nahimovskij prospect, 117418 MoscowBoris Revich
Institute of Economic Forecasting, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: brevich@yandex.ru
ORCID iD: 0000-0002-7528-6643
SPIN 代码: 8098-1930
Scopus 作者 ID: 55941085000
MD, Dr. Sci. (Med.), professor
俄罗斯联邦, 47 Nahimovskij prospect, 117418 Moscow参考
- Robine JM, Cheung SL, Le Roy S, et al. Death toll exceeded 70,000 in Europe during the summer of 2003. C R Biol. 2008;331(2):171–178. doi: 10.1016/j.crvi.2007.12.001
- Merte S. Estimating heat wave-related mortality in Europe using singular spectrum analysis. Climatic Change. 2017;142:321–330. doi: 10.1007/s10584-017-1937-9
- Shaposhnikov D, Revich В, Bellander T, et al. Mortality related to air pollution with the Moscow heat wave and wildfire of 2010. Epidemiology. 2014;25(3):359–364. doi: 10.1097/EDE.0000000000000090
- Revich BA. Volny zhary kak faktor riska dlja zdorov'ja naselenija. Pulmonologiya. 2011;(4):34–37. (In Russ).
- Son JY, Lio JC, Bell M. Temperature-related mortality: a systematic review and investigation of effect modifiers. Environ Res Lett. 2019;14(7):073004. doi: 10.1088/1748-9326/ab1cdb
- Romanello M, McGushin A, Di Napoli C, et al. The 2021 report of the Lancet Countdown on health and climate change: code red for a healthy future. Lancet. 2021;398(10311):1619–1662. doi: 10.1016/S0140-6736(21)01787-6
- Masson-Delmotte V, Zhai P, Pirani A, et al, editors. IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press; 2391 p. doi: 10.1017/9781009157896.
- Xiao J, Peng J, Zhang Y, et al. How much does latitude modify temperature-mortality relationship in 13 eastern US cities? Int J Biometeorol. 2015;59(3):365–372. doi: 10.1007/s00484-014-0848-y
- Revich BA, Shaposhnikov DA, Shkolnik IM. Projections of temperature-dependent mortality in Russian subarctic under climate change scenarios: a longitudinal study across several climate zones. Proceedings of the IOP Conference Series: Earth and Environmental Science. Climate change: causes, risks, consequences, problems of adaptation and management; 2019 Nov 26–28; Moscow. 2020. Vol. 606. P. 012050. Available from: https://iopscience.iop.org/article/10.1088/1755-1315/606/1/012050/meta
- Evangelopoulos D, Analitis A, Giannakopoulos C, Katsouyanni K. Does climatic zone of birth modify the temperature-mortality association of London inhabitants during the warm season? A time-series analysis for 2004–2013. Environ Res. 2021;193:110357. doi: 10.1016/j.envres.2020.110357
- Guo Y, Gasparrini A, Armstrong B, et al. Global variation in the effects of ambient temperature on mortality: a systematic evaluation. Epidemiology. 2014;25(6):781–789. doi: 10.1097/EDE.0000000000000165
- Tobías A, Hashizume M, Honda Y, et al. Geographical variations of the minimum mortality temperature at a global scale: a multicountry study. Environ Epidemiol. 2021;5(5):e169. doi: 10.1097/EE9.0000000000000169
- Zhao Q, Guo Y, Ye T, et al. Global, regional, and national burden of mortality associated with non-optimal ambient temperatures from 2000 to 2019: a three-stage modelling study. Lancet Planet Health. 2021;5(7):e415–e425. doi: 10.1016/S2542-5196(21)00081-4
- Guo Y, Gasparrini A, Li S, et al. Quantifying excess deaths related to heatwaves under climate change scenarios: a multicountry time series modelling study. PLoS Med. 2018;15(7):e1002629. doi: 10.1371/journal.pmed.1002629
- Hopstock LA, Fors AS, Bønaa KH, et al. The effect of daily weather conditions on myocardial infarction incidence in a subarctic population: the Tromsø study 1974–2004. J Epidemiol Commun Health. 2012;66(9):815–820. doi: 10.1136/jech.2010.131458
- Edel’geriev RSK, Romanovskaya AA. New approaches to the adaptation to climate change: the Arctic Zone of Russia. Meteorologiya i Gidrologiya. 2020;45(5):305–316. (In Russ). doi: 10.3103/S1068373920050015
- Revich BA, Shaposhnikov DA, Anisimov OA, Belolutskaya MA. Impact of temperature waves on the health of residents in cities of the northwestern region of Russia. Studies on Russian Economic Development. 2019;30(3):327–333. (In Russ). doi: 10.1134/S1075700719030158
- Top S, Milošević D, Caluwaerts S, Savić S. Intra-urban differences of outdoor thermal comfort in Ghent on seasonal level and during record-breaking 2019 heat wave. Build Environ. 2020;185:107103. doi: 10.1016/j.buildenv.2020.107103
- Wang L, Liu T, Hu M, et al. The impact of cold spells on mortality and effect modification by cold spell characteristics. Sci Rep. 2016;6:38380. doi: 10.1038/srep38380
- Shartova N, Shaposhnikov D, Konstantinov P, Revich B. Сardiovascular mortality during heat waves in temperate climate: an association with bioclimatic indices. Int J Environ Health Res. 2018;28(5):522–534. doi: 10.1080/09603123.2018.1495322
- Shartova NV, Shaposhnikov DA, Konstantinov PI, Revich BA. Air temperature and mortality: heat thresholds and population vulnerability study in Rostov-on-Don. Fundamental'naya i prikladnaya klimatologiya. 2019;2:66–94. doi: 10.21513/2410-8758-2019-2-66-94
- Arsenović D, Savić S, Lužanin Z, et al. Heat-related mortality as an indicator of population vulnerability in a mid-sized Central European city (Novi Sad, Serbia, summer 2015). Geographic Pannonica. 2019;23(4):204–215. doi: 10.5937/gp23-22680
- Davis RE, Hondula DM, Patel AP. Temperature observation time and type influence estimates of heat-related mortality in seven U.S. cities. Environ Health Perspect. 2016;124(6):795–804. doi: 10.1289/ehp.1509946
- Wang Y, Shi L, Zanobetti A, Schwartz JD. Estimating and projecting the effect of cold waves on mortality in 209 US cities. Environ Int. 2016;94:141–149. doi: 10.1016/j.envint.2016.05.008
- Revich BA, Shaposhnikov DA. Extreme temperature episodes and mortality in Yakutsk, Eastern Siberia. Rural Remote Health. 2010;10(2):1338. doi: 10.22605/RRH1338
- Shaposhnikov D, Revich B. Towards meta-analysis of impacts of heat and cold waves on mortality in Russian North. Urban Clim. 2016;15:16–24. doi: 10.1016/j.uclim.2015.11.007
- Kurovskaya EA, Makar'eva OM, Nesterova NV, et al. Rekonstruktsiya katastroficheskogo pavodka 2014 goda v basseine r. Magadanki na osnove kompleksnogo gidrometeorologicheskogo modelirovaniya. In: Sbornik trudov konferentsii «Chetvertye Vinogradovskie chteniya Gidrologiya ot poznaniya k mirovozzreniyu. Saint Petersburg, 2020 Oct 23–31. Izdatel'stvo VVM, Saint Petersburg. P. 696–701. (In Russ).
- Kottek M, Grieser J, Beck C, et al. World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift. 2006;1(3):259–263. doi: 10.1127/0941-2948/2006/0130
- Ma Y, Zhou L, Chen K. Burden of cause-specific mortality attributable to heat and cold: a multicity time-series study in Jiangsu Province, China. Environ Int. 2020;144:105994. doi: 10.1016/j.envint.2020.105994
- Chen R, Yin P, Wang L, et al. Association between ambient temperature and mortality risk and burden: time series study in 272 main Chinese cities. BMJ. 2018;363:k4306. doi: 10.1136/bmj.k4306
- Gasparrini A, Armstrong B, Kenward MG. Multivariate meta-analysis for non-linear and other multi-parameter associations. Stat Med. 2012;363:3821–3839.
- Gasparrini A, Armstrong B. The impact of heat waves on mortality. Epidemiology. 2011;22(1):68–73. doi: 10.1097/EDE.0b013e3181fdcd99
- Sheridan SC, Lee CC, Allen MJ. The mortality response to absolute and relative temperature extremes. Int J Environ Res Public Health. 2019;16(9):1493. doi: 10.3390/ijerph16091493
- Zhou MG, Wang LJ, Liu T, et al. Health impact of the 2008 cold spell on mortality in subtropical China: the climate and health impact national assessment study (CHINAs). Environ Health. 2014;13:60. doi: 10.1186/1476-069X-13-60
- Carmona R, Díaz J, Mirón IJ, et al. Geographical variation in relative risks associated with cold waves in Spain: the need for a cold wave prevention plan. Environ Int. 2016;88:103–111. doi: 10.1016/j.envint.2015.12.027
- Wolf J, Adger WN, Lorenzoni I. Heat waves and cold spells: an analysis of policy response and perceptions of vulnerable populations in the UK. Environment and Planning A: Economy and Space. 2010;42(11):2721–2734. doi: 10.1068/a42503
- Konstantinov PI, Varentsov MI, Grishchenko MYu, et al. Thermal stress assessment for an Arctic city in summer. Arctic: Ecology and Economy. 2021;11(2):219–231. doi: 10.25283/2223-4594-2021-2-219-231. (In Russ).
- Vil'fand RM, Kiktev DB, Rivin GS. Na puti k prognozu pogody dlja megapolisov. In: Sbornik tezisov dokladov mezhdunarodnoj konferencii, posvjashhennoj stoletiju so dnja rozhdenija akademika AM Obuhova. «Turbulentnost', Dinamika atmosfery i klimata». Moscow; 2018 May 16–18. P. 7. (In Russ).
- Revich BA, Maleev VV, Smirnova MD, Pshenichnaya NYu. Russian and international experience in the development of action plans for the protection of human health from climate risks. Hygiene and Sanitation. 2020;99(2):176–181. (In Russ). doi: 10.47470/0016-9900-2020-99-2-176-18
- Ministry of Health of the Russian Federation. 2022. Plan adaptatsii k izmeneniyam klimata. https://minzdrav.gov.ru/documents/9701-plan-adaptatsii-k-izmeneniyam-klimata (In Russ).
补充文件
