Genome editing in neurodegenerative diseases: risk analysis, technological challenges, and prospects for clinical application

Capa
  • Autores: Evert L.S.1,2, Potupchik T.V.3, Veselova O.F.3, Svetlakova I.S.4, Panchenko V.A.4, Kuzhasheva R.R.5, Melnikova A.N.6
  • Afiliações:
    1. Federal Research Center “Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences”
    2. Khakass State University named after N.F. Katanov of the Ministry of Science and Higher Education of the Russian Federation
    3. Federal State Budgetary Educational Institution of Higher Education “Krasnoyarsk State Medical University named after Professor V.F. Voino-Yasenetsky” of the Ministry of Health of the Russian Federation
    4. Federal State Autonomous Educational Institution of Higher Education “Russian National Research Medical University named after N.I. Pirogov” of the Ministry of Health of the Russian Federation
    5. Federal State Budgetary Educational Institution of Higher Education “Bashkir State Medical University” of the Ministry of Health of the Russian Federation
    6. Regional Budgetary Healthcare Institution “Zolotukhinskaya Central District Hospital”
  • Edição: Volume 23, Nº 2 (2025)
  • Páginas: 21-31
  • Seção: Reviews
  • URL: https://journal-vniispk.ru/1728-2918/article/view/293270
  • DOI: https://doi.org/10.29296/24999490-2025-02-03
  • ID: 293270

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Objective. To analyze the potential risks and technological limitations of using genome editing methods in neurodegenerative diseases, as well as to assess the prospects for their implementation in clinical practice.

Material and methods. A systematic analysis of the literature for the period 2014–2024 in the databases PubMed, Cochrane Library, ClinicalTrials.gov, SAGE Premier, Springer and Wiley Journals. The key risks of using genome editing technologies are considered, including inappropriate effects, immunological reactions, and long-term consequences of changes in the DNA of nervous tissue.

Results. The main technological limitations are analyzed, including problems of delivery across the blood-brain barrier, low editing efficiency in postmitotic neurons, and the complexity of long-term expression of components of editing systems. The prospects of introducing technologies into clinical practice are assessed, taking into account the current regulatory landscape in various countries.

Conclusion. Despite significant technological challenges and potential risks, the development of genome editing techniques opens up prospects for the creation of effective treatments for neurodegenerative diseases. Key areas of further research include improving the safety and specificity of editing, optimizing delivery systems, and developing methods for long-term monitoring of the effects of genetic modifications in the nervous system.

Sobre autores

Lydia Evert

Federal Research Center “Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences”; Khakass State University named after N.F. Katanov of the Ministry of Science and Higher Education of the Russian Federation

Autor responsável pela correspondência
Email: lidiya_evert@mail.ru
ORCID ID: 0000-0003-0665-7428

Scientific Research Institute of Medical Problems of the North, Chief Researcher, Clinical Department of Somatic and Mental Health of Children, Medical Institute, Doctor of Medical Sciences

Rússia, Partizan Zheleznyak str., 3g, Krasnoyarsk, 660022; Lenin Ave., 90, Abakan, 655017

Tatyana Potupchik

Federal State Budgetary Educational Institution of Higher Education “Krasnoyarsk State Medical University named after Professor V.F. Voino-Yasenetsky” of the Ministry of Health of the Russian Federation

Email: potupchik_tatyana@mail.ru
ORCID ID: 0000-0003-1133-4447

Associate Professor, Department of Pharmacology and Clinical Pharmacology with a postgraduate course, Candidate of Medical Sciences

Rússia, Partizan Zheleznyak str., 1, Krasnoyarsk, 660022

Olga Veselova

Federal State Budgetary Educational Institution of Higher Education “Krasnoyarsk State Medical University named after Professor V.F. Voino-Yasenetsky” of the Ministry of Health of the Russian Federation

Email: Veselovaof@mail.ru
ORCID ID: 0000-0002-6126-665X

Head of the Department of Pharmacology and Clinical Pharmacology with a postgraduate course, Candidate of Medical Sciences

Rússia, Partizan Zheleznyak str., 1, Krasnoyarsk, 660022

Irina Svetlakova

Federal State Autonomous Educational Institution of Higher Education “Russian National Research Medical University named after N.I. Pirogov” of the Ministry of Health of the Russian Federation

Email: irinasvetlakova2000@gmail.ru
ORCID ID: 0009-0005-7622-2827

6th year student

Rússia, Ostrovityanova str., 1, Moscow, 117997

Viktor Panchenko

Federal State Autonomous Educational Institution of Higher Education “Russian National Research Medical University named after N.I. Pirogov” of the Ministry of Health of the Russian Federation

Email: viktor-panchenko@inbox.ru
ORCID ID: 0009-0001-2122-8501

6th year student

Rússia, Ostrovityanova str., 1, Moscow, 117997

Rina Kuzhasheva

Federal State Budgetary Educational Institution of Higher Education “Bashkir State Medical University” of the Ministry of Health of the Russian Federation

Email: rkuzhasheva@bk.ru
ORCID ID: 0009-0001-7884-4209

6th year student

Rússia, Lenin str., 3, Ufa, 450008, Republic of Bashkortostan;

Anastasia Melnikova

Regional Budgetary Healthcare Institution “Zolotukhinskaya Central District Hospital”

Email: nasmel00@mail.ru
ORCID ID: 0009-0006-6084-2578

doctor of the emergency department

Rússia, Kirova str., 81, Zolotukhino work settlement, Zolotukhinsky district, Kursk region, 306020

Bibliografia

  1. Yuan B., Bi C., Tian Y., Wang J., Jin Y., Alsayegh K., Tehseen M. et al. Modulation of the microhomology-mediated end joining pathway suppresses large deletions and enhances homology-directed repair following CRISPR-Cas9-induced DNA breaks. BMC Biology. 2024; 101.
  2. Park H., Shin J., Kim Y., Saito T., Saido T.C., Kim J. CRISPR/dCas9-Dnmt3a-mediated targeted DNA methylation of APP rescues brain pathology in a mouse model of Alzheimer’s disease. Neurodegener. 2022; 11 (1): 41. doi: 10.1186/s40035-022-00314-0
  3. Hunt J.M.T., Samson C.A., Rand A., Sheppard H.M. Unintended CRISPR-Cas9 editing outcomes: a review of the detection and prevalence of structural variants generated by gene-editing in human cells. Hum Genet. 2023; 142: 705–20. doi: 10.1007/s00439-023-02561-1
  4. Wouters Y., Jaspers T., De Strooper B., Dewilde M. Identification and in vivo characterization of a brain-penetrating nanobody. Fluids Barriers CNS. 2020; 17 (1): 62. doi: 10.1186/s12987-020-00226-z.
  5. Waheed S., Li Z., Zhang F., Chiarini A., Armato U., Wu J. Engineering nano-drug biointerface to overcome biological barriers toward precision drug delivery. J. Nanobiotechnol. 2022; 20: 395. doi: 10.1186/s12951-022-01605-4
  6. Chew W.L., Tabebordbar M., Cheng J.K., Mali P., Wu E.Y., Ng A.H., Zhu K. et al. A multifunctional AAV–CRISPR–Cas9 and its host response. Nature Methods. 2016; 13 (10): 868–74. doi: 10.1038/NMETH.3993.
  7. Chien Y., Hsiao Y.J., Chou S.J., Lin T.-Y., Yarmishyn A.A., Lai W.-Y., Lee M.-S. et al. Nanoparticles-mediated CRISPR-Cas9 gene therapy in inherited retinal diseases: applications, challenges, and emerging opportunities. J. Nanobiotechnol. 2022; 20: 511. doi: 10.1186/s12951-022-01717-x.
  8. Haery L., Deverman B.E., Matho K.S., Cetin A., Woodard K., Cepko C., Guerin K. I. et al. Adeno-Associated Virus Technologies and Methods for Targeted Neuronal Manipulation. Frontiers in Neuroanatomy. 2019; 13: 493120. doi: 10.3389/fnana.2019.00093.
  9. Rincon M.Y., De Vin F., Duqué S.I., Fripont S., Castaldo S.A., Holt M.G. Widespread transduction of astrocytes and neurons in the mouse central nervous system after systemic delivery of a self-complementary AAV-PHP.B vector. Gene Therapy. 2018; 25 (2): 83–92. doi: 10.1038/s41434-018-0005-z.
  10. Nishiyama J., Mikuni T., Yasuda R. Virus-Mediated Genome Editing via Homology-Directed Repair in Mitotic and Postmitotic Cells in Mammalian Brain. Neuron. 2017; 96 (4): 755–68.e5. doi: 10.1016/j.neuron.2017.10.004.
  11. Fang H., Bygrave A.M., Roth R.H., Johnson R.C, Huganir R.L. An optimized CRISPR/Cas9 approach for precise genome editing in neurons. ЕLife. 2021; 10: e65202. doi: 10.7554/eLife.65202.
  12. Guo T., Feng Y.L., Xiao J., Liu Q., Sun X.-N., Xiang J.-F, Kong N. et al. Harnessing accurate non-homologous end joining for efficient precise deletion in CRISPR/Cas9-mediated genome editing. Genome Biol. 2018; 19 (1): 170. doi: 10.1186/s13059-018-1518-x.
  13. Lotfi M., Ashouri A., Mojarrad M., Mozaffari-Jovin S., Abbaszadegan M.R. Design Principles of a Novel Construct for HBB Gene-Editing and Investigation of Its Gene-Targeting Efficiency in HEK293 Cells. Mol. Biotechnol. 2024; 66 (3): 517–30. doi: 10.1007/s12033-023-00739-6.
  14. Koshland D., Tapia H. Desiccation tolerance: an unusual window into stress biology. Mol. Biol. Cell. 2019; 30 (6): 737–41. doi: 10.1091/mbc.E17-04-0257.
  15. Charlesworth C.T., Deshpande P.S., Dever D.P., Dejene B., Gomez-Ospina N., Mantri S., Pavel-Dinu M. et al. Identification of Pre-Existing Adaptive Immunity to Cas9 Proteins in Humans. Nature Medicine. 2019; 25: 249–54. doi: 10.1038/s41591-018-0326-x
  16. Samach A., Mafessoni F., Gross O., Melamed-Bessudo C., Filler-Hayut S., Dahan-Meir T., Amsellem Z. et al. CRISPR/Cas9-induced DNA breaks trigger crossover, chromosomal loss, and chromothripsis-like rearrangements. The Plant Cell. 2023; 35 (11): 3957–72. doi: 10.1093/plcell/koad209
  17. Dabrowska M., Ciolak A., Kozlowska E., Fiszer A., Olejniczak M. Generation of New Isogenic Models of Huntington’s Disease Using CRISPR-Cas9 Technology. International J. of Molecular Sciences. 2019; 21 (5): 1854. doi: 10.3390/ijms21051854
  18. Mullard A. CRISPR technologies are going to need a bigger toolbox. Nat Rev Drug Discov. 2021; 20 (11): 808–9. doi: 10.1038/d41573-021-00177-6
  19. Willems J., de Jong A.P.H., Scheefhals N., Mertens E., Catsburg L.A.E., Poorthuis R.B., de Winter F. et al. ORANGE: A CRISPR/Cas9-based genome editing toolbox for epitope tagging of endogenous proteins in neurons. PLoS Biology. 2020; 18 (4): e3000665. doi: 10.1371/journal.pbio.3000665
  20. Chang W., Zhao Y., Rayêe D., Xie Q., Suzuki M., Zheng D., Cvekl A. Dynamic changes in whole genome DNA methylation, chromatin and gene expression during mouse lens differentiation. Epigenetics Chromatin. 2023; 16 (1): 4. doi: 10.1186/s13072-023-00478-7.
  21. Zhao L., Zhou Q., He L., Deng L., Lozano-Duran R., Li G., Zhu J.-K. DNA methylation underpins the epigenomic landscape regulating genome transcription in. Arabidopsis. Genome Biol. 2022; 23 (1): 197. doi: 10.1186/s13059-022-02768-x.
  22. Disatham J., Brennan L., Jiao X., Ma Z., Hejtmancik J.F., Kantorow M. Changes in DNA methylation hallmark alterations in chromatin accessibility and gene expression for eye lens differentiation. Epigenetics Chromatin. 2022; 15 (1): 8. doi: 10.1186/s13072-022-00440-z .
  23. Zhong, Z., Xue, Y., Harris, C.J., Wang M., Li Z., Ke Y., Liu M. et al. MORC proteins regulate transcription factor binding by mediating chromatin compaction in active chromatin regions. Genome Biol. 2023; 24 (1): 96. doi: 10.1186/s13059-023-02939-4.
  24. Viscomi C., van den Ameele J., Meyer K.C., Chinnery P.F. Opportunities for mitochondrial disease gene therapy. Nature Reviews Drug Discovery. 2023; 22 (6): 429–30. doi: 10.1038/d41573-023-00067-z.
  25. Phan H.T.L., Lee H., Kim K. Trends and prospects in mitochondrial genome editing. Experimental Molecular Medicine. 2023; 55 (5): 871–8. doi: 10.1038/s12276-023-00973-7.
  26. Bazzani V., Redin M.E., McHale J., Perrone L., Vascotto C. Mitochondrial DNA Repair in Neurodegenerative Diseases and Ageing. Int J. Mol. Sci. 2022; 23 (19): 11391. doi: 10.3390/ijms231911391.
  27. Leng K., Kampmann M. Towards elucidating disease-relevant states of neurons and glia by CRISPR-based functional genomics. Genome Med. 2022; 14: 130. doi: 10.1186/s13073-022-01134-7.
  28. Meneghini V., Peviani M., Luciani M., Zambonini G., Gritti A. Delivery Platforms for CRISPR/Cas9 Genome Editing of Glial Cells in the Central Nervous System. Frontiers in Genome Editing. 2021; 3: 644319. doi: 10.3389/fgeed.2021.644319.
  29. Gutierrez G.B., Liang H., Rezaie N., Carvalho K., Forner S., Matheos D., Rebboah E. et al. Single-cell and nucleus RNA-seq in a mouse model of AD reveal activation of distinct glial subpopulations in the presence of plaques and tangles. BioRxiv preprint. 2021. doi: 10.1101/2021.09.29.462436.
  30. Thompson T. How CRISPR gene editing could help treat Alzheimer’s. Nature. 2024; 625 (7993): 13–4. doi: 10.1038/d41586-023-03931-5.
  31. Zhou H., Ye P., Xiong W. Duan X., Jing S., He Y., Zeng Z. et al. Genome-scale CRISPR-Cas9 screening in stem cells: theories, applications and challenges. Stem Cell Res Ther. 2024; 15 (1): 218. doi: 10.1186/s13287-024-03831-z
  32. Lin Y., Li J., Li C., Tu Z., Li S., Li X., Yan, S. Application of CRISPR/Cas9 System in Establishing Large Animal Models. Frontiers in Cell and Developmental Biology. 2022; 10: 919155. doi: 10.3389/fcell.2022.919155
  33. Jiang P., Alam M. M. Rise of the human-mouse chimeric brain models. Cell Regeneration. 2022; 11 (1): 1–4. doi: 10.1186/s13619-022-00135-6
  34. Kleinstiver B.P., Pattanayak V., Prew M.S., Tsai S.Q., Nguyen N.T., Zheng Z., Joung J.K. (2015). High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature. 2015; 529 (7587): 490–5. doi: 10.1038/nature16526
  35. Shen B., Zhang W., Zhang J., Zhou J., Wang J., Chen L., Wang L. et al. Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. 2014. Nature Methods. 2014; 11 (4): 399–402. doi: 10.1038/nmeth.2857
  36. Anzalone A.V., Randolph P.B., Davis J.R., Sousa A.A., Koblan L.W., Levy J. M., Chen P.J. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019; 576 (7785): 149–57. doi: 10.1038/s41586-019-1711-4
  37. Konermann S., Brigham M.D., Trevino A.E., Joung J., Abudayyeh O.O., Barcena C., Hsu P.D. et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature. 2014; 517 (7536): 583. doi: 10.1038/nature14136
  38. Liu X.S., Wu H., Ji X., Stelzer Y., Wu X., Czauderna S., Shu J. et al. Editing DNA Methylation in the Mammalian Genome. Cell. 2016; 167 (1): 233–47. doi: 10.1016/j.cell.2016.08.056
  39. Cox D.B.T., Gootenberg J.S., Abudayyeh O.O., Franklin B., Kellner M.J., Joung J., Zhang F. RNA editing with CRISPR-Cas13. Science. 2017; 358 (6366): 1019–27. doi: 10.1126/science.aaq0180
  40. Merkle T., Merz S., Reautschnig P., Blaha A., Li Q., Vogel P., Wettengel J. Precise RNA editing by recruiting endogenous ADARs with antisense oligonucleotides Nat Biotechnol. 2019; 37 (2): 133–8. doi: 10.1038/s41587-019-0013-6.
  41. Dunbar C.E., High K.A., Joung J.K., Kohn D.B., Ozawa K., Sadelain M. Gene therapy comes of age. Science. 2018; 359 (6372): eaan4672. doi: 10.1126/science.aan4672.
  42. Ross C.A., Aylward E.H., Wild E.J., Langbehn D.R., Long J.D., Warner J.H., Scahill R.I. et al. Huntington disease: Natural history, biomarkers and prospects for therapeutics. Nature Reviews Neurology. 2014; 10 (4): 204–16. doi: 10.1038/nrneurol.2014.24.
  43. Valdes P., Caldwell A.B., Liu Q., Fitzgerald M.Q., Ramachandran S., Karch C.M., Galasko D.R. et al. Integrative multiomics reveals common endotypes across PSEN1, PSEN2, and APP mutations in familial Alzheimer’s disease. Alz Res Therapy. 2025; 17: 5. doi: 10.1186/s13195-024-01659-6
  44. Chia R., Chio A., Traynor B.J. Novel genes associated with amyotrophic lateral sclerosis: diagnostic and clinical implications. The Lancet Neurology. 2018; 17 (1): 94–102. doi: 10.1016/S1474-4422(17)30401-5.
  45. Hudry E., Vandenberghe L.H. Therapeutic AAV gene transfer to the nervous system: a clinical reality. Neuron. 2019; 101 (5): 839–62. doi: 10.1016/j.neuron.2019.01.048.
  46. Cornu T.I., Mussolino C., Cathomen T. Refining strategies to translate genome editing to the clinic. Nature Medicine. 2017; 23 (4): 415–23. doi: 10.1038/nm.4303.
  47. Ginn S.L., Amaya A.K., Alexander I.E., Edelstein M., Abedi M.R., Cavazzana M. Gene therapy clinical trials worldwide to 2017: An update. J. of Gene Medicine. 2018; 20 (5): e3015. doi: 10.1002/jgm.3015.
  48. Wang D., Tai P.W.L., Gao G. Adeno-associated virus vector as a platform for gene therapy delivery. Nature Reviews Drug Discovery. 2019; 18 (5): 358–78. doi: 10.1038/s41573-019-0012-9.
  49. Hampson G., Towse A., Pearson S.D., Dreitlein W.B., Henshall C. Gene therapy: evidence, value and affordability in the US health care system. Journal of Comparative Effectiveness Research. 2019; 8 (14): 1013–28. doi: 10.2217/cer-2019-0047.
  50. U.S. Food and Drug Administration. Human Gene Therapy for Neurodegenerative Diseases: Guidance for Industry. 2019. URL: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/human-gene-therapy-neurodegenerative-diseases. (accessed: 1.03.2025).
  51. National Institutes of Health. CRISPR Research Funding. 2021. URL: https://report.nih.gov. (accessed: 1.03.2025).
  52. National Academies of Sciences, Engineering, and Medicine. Heritable Human Genome Editing. 2020. doi: 10.17226/25665
  53. EMA. Guideline on quality, non-clinical and clinical aspects of gene therapy medicinal products. 2021. URL: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-quality-non-clinical-clinical-aspects-gene-therapy-medicinal-products-revision-1_en.pdf]. (accessed: 1.03.2025).
  54. Council of Europe. Convention on Human Rights and Biomedicine (Oviedo Convention). 1997. URL: https://www.coe.int/en/web/conventions/full-list/-/conventions/treaty/164. (accessed: 1.03.2025).
  55. Qiu J. China’s CRISPR babies: more ethical questions. Nature. 2019; 566 (7745): 427–8. doi: 10.1038/d41586-019-00673-1.
  56. Li H., Yang Y., Hong W., Huang M., Wu M., Zhao X. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduction and Targeted Therapy. 2020; 5 (1): 1. doi: 10.1038/s41392-019-0089-y.
  57. Matsuyama K. Japan to allow genome editing in human embryos for research. Nature News. 2018. doi: 10.1038/d41586-018-02110-0.
  58. Gibney E. UK scientists gain licence to edit genes in human embryos. Nature. 2016; 530 (7588): 18. doi: 10.1038/nature.2016.19270.
  59. TGA. Regulation of gene technology in Australia. 2018. URL: https://www.tga.gov.au. (accessed: 1.03.2025).
  60. Еськова В.А. Правовое регулирование редактирования генома человека. Уральский журнал правовых исследований. 2022; 2 (19): 29–33. [Eskova V.A. Legal regulation of human genome editing. Ural J. of Legal Research. 2022; 2 (19): 29–33. doi: 10.34076/2658_512X_2022_2_29 (In Russian)].
  61. Особенности национально-правового регулирования геномных исследований в отдельных государствах. Международный правовой курьер. 2023. [Peculiarities of national legal regulation of genomic research in individual states. International Legal courier. 2023. URL: https://inter-legal.ru/osobennosti-natsionalno-pravovogo-regulirovaniya-genomnyh-issledovanij-v-otdelnyh-gosudarstvah (accessed: 1.03.2025) (In Russian)].
  62. Мохов А.А., Бутнару Д.В., Яворский А. Н. Редактирование генома эмбриона человека: правовой аспект. Образование и право. 2019; 1: 227–34. [Mokhov A.A., Butnaru D.V., Yavorskiy A.N. Editing of the human embryo genome: a legal aspect. Education and law. 2019; 1: 227–34 (In Russian)].
  63. WHO. Human genome editing: recommendations. 2021. URL: https://www.who.int/publications/i/item/9789240030942. (accessed: 1.03.2025).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».