The role of the AKT1 gene in the Pathogenesis of type 2 diabetes mellitus and its complications

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Introduction. Type 2 diabetes (T2D) is a chronic metabolic disorder. The number of diabetic people is increasing. AKT1 is a protein kinase and a participant in the PI3K/AKT/mTOR signaling pathway. The aim of the study was to analyze the association of polymorphic variants rs3803300 and rs2494732 of the AKT1 gene with the risk of developing type 2 diabetes and its complications.

Methods. PCR-RFLP analysis was used to study polymorphic variants of two polymorphic loci of the AKT1 gene. DNA samples of 533 patients with T2D and 397 individuals of the control group were used in the work.

Results. The association of the rs3803300 locus of the AKT1 gene with the risk of developing T2D, the effect allele T (р=0.02), and the risk genotypes of CT-CC of the rs2494732 locus of the AKT1 gene (р=0.042) were revealed. It was shown that carriers of the CT-CC genotypes of the rs2494732 locus of the AKT1 gene had an increased weight (р=0.026). An association of the rs3803300 locus of the AKT1 gene with the risk of developing diabetic retinopathy (р=0.021), polyneuropathy (р=0.0084), coronary heart disease (р=0.032) and diabetic encephalopathy (р=0.0064) was found. The rs2494732 locus of the AKT1 gene is associated with the development of diabetic nephropathy (р=0.024).

Conclusion. The data obtained indicate the prospects of analyzing the PI3K/AKT/mTOR signaling pathway genes for the search for personalized predictors of T2D and its complications.

About the authors

Olga V. Kochetova

Institute of Biochemistry and Genetics – a structural subdivision of the Federal State Budgetary Scientific Institution of the Ufa Federal Research Center of the Russian Academy of Sciences; Bashkir State Medical University

Email: Olga_mk78@mail.ru
ORCID iD: 0000-0003-2071-0969

Senior Researcher of Institute of Biochemistry and Genetics, PhD

 

Russian Federation, Prospekt Oktyabrya, 71, Ufa, 450054; Lenina, 3, Ufa, 450008

Ziliya A. Shangareeva

Bashkir State Medical University

Email: shangareeva2001@mail.ru
ORCID iD: 0000-0001-8745-9989

Associate Professor at the Faculty of pediatrics with courses in pediatrics, neonatology and a simulation center, PhD

Russian Federation, Lenina, 3, Ufa, 450008

Diana S. Avsaleydiniva

Bashkir State Medical University

Email: ecolab_203@mail.ru
ORCID iD: 0000-0002-1590-6433

Associate Professor at the Department of Endocrinology, PhD

Russian Federation, Lenina, 3, Ufa, 450008

Tatiana V. Viktorova

Bashkir State Medical University

Email: t_vict@mail.ru
ORCID iD: 0000-0001-8900-2480

Head of the Department of Biology, PhD

Russian Federation, Lenina, 3, Ufa, 450008

Gulnas F. Korytina

Institute of Biochemistry and Genetics – a structural subdivision of the Federal State Budgetary Scientific Institution of the Ufa Federal Research Center of the Russian Academy of Sciences; Bashkir State Medical University

Author for correspondence.
Email: guly_kory@mail.ru
ORCID iD: 0000-0002-1695-5173
SPIN-code: 1200-2906

Expert scientific worker of Institute of Biochemistry and Genetics, Doctor of biological sciences

Russian Federation, Prospekt Oktyabrya, 71, Ufa, 450054; Lenina, 3, Ufa, 450008

References

  1. King D., Yeomanson D., Bryant H.E. PI3King the lock: targeting the PI3K/Akt/mTOR pathway as a novel therapeutic strategy in neuroblastoma. J. Pediatr Hematol Oncol. 2015; 37 (4): 245–51. doi: 10.1097/MPH.0000000000000329
  2. Eshaghi F.S., Ghazizadeh H., Kazami-Nooreini S., Timar A., Esmaeily H., Mehramiz M., Avan A., Ghayour-Mobarhan M. Association of a genetic variant in AKT1 gene with features of the metabolic syndrome. Genes Dis. 2019; 6 (3): 290–5. doi: 10.1016/j.gendis.2019.03.002
  3. Zhang M., Yang J., Zhao X., Zhao Y., Zhu S. Network pharmacology and molecular docking study on the active ingredients of qidengmingmu capsule for the treatment of diabetic retinopathy. Sci Rep. 2021; 11 (1): 7382. doi: 10.1038/s41598-021-86914-8
  4. Busaidy N.L., Farooki A., Dowlati A., Perentesis J.P., Dancey J.E., Doyle L.A., Brell J.M., Siu L.L. Management of metabolic effects associated with anticancer agents targeting the PI3K-Akt-mTOR pathway. J. Clin. Oncol. 2012; 30 (23): 2919–28. doi: 10.1200/JCO.2011.39.7356
  5. Piao Y., Li Y., Xu Q., Liu J.W., Xing C.Z., Xie X.D., Yuan Y. Association of MTOR and AKT Gene Polymorphisms with Susceptibility and Survival of Gastric Cancer. PLoS One. 2015; 10 (8): e0136447. doi: 10.1371/journal.pone.0136447
  6. Zhang X., Chen X., Zhai Y., Cui Y., Cao P., Zhang H., Wu Z., Li P., Yu L., Xia X., He F., Zhou G. Combined effects of genetic variants of the PTEN, AKT1, MDM2 and p53 genes on the risk of nasopharyngeal carcinoma. PLoS One. 2014; 14; 9 (3): e92135. doi: 10.1371/journal.pone.0092135
  7. Saravani M., Shahraki-Ghadimi H., Maruei-Milan R., Mehrabani M., Mirzamohammadi S., Nematollahi M.H. Effects of the mTOR and AKT genes polymorphisms on systemic lupus erythematosus risk. Mol Biol Rep. 2020; 47 (5): 3551–6. doi: 10.1007/s11033-020-05446-y
  8. Kochetova O.V., Avzaletdinova D.S., Korytina G.F., Morugova T.V., Mustafina O.E. The association between eating behavior and polymorphisms in GRIN2B, GRIK3, GRIA1 and GRIN1 genes in people with type 2 diabetes mellitus. Mol Biol Rep. 2020; 47 (3): 2035–46. doi: 10.1007/s11033-020-05304-x
  9. Boyle A.P., Hong E.L., Hariharan M, Cheng Y, Schaub MA, Kasowski M, Karczewski KJ, Park J, Hitz BC, Weng S, Cherry JM, Snyder M. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 2012; 22 (9): 1790–7. doi: 10.1101/gr.137323.112
  10. Carithers L.J., Ardlie K., Barcus M., Branton P.A., Britton A., Buia S.A., Compton C.C., DeLuca D.S., Peter-Demchok J., Gelfand E.T., Guan P., Korzeniewski G.E., Lockhart N.C., Rabiner C.A., Rao A.K., Robinson K.L., Roche N.V., Sawyer S.J., Segrè A.V., Shive C.E., Smith A.M., Sobin L.H., Undale A.H., Valentino K.M., Vaught J., Young T.R., Moore H.M. GTEx Consortium. A Novel Approach to High-Quality Postmortem Tissue Procurement: The GTEx Project. Biopreserv Biobank. 2015; 13 (5): 311–9. doi: 10.1089/bio.2015.0032
  11. Gene Ontology Consortium; Aleksander S.A., Balhoff J., Carbon S., Cherry J.M., Drabkin H.J., Ebert D., Feuermann M., Gaudet P., Harris N.L., Hill D.P., Lee R., Mi H., Moxon S., Mungall C.J., Muruganugan A., Mushayahama T., Sternberg P.W., Thomas P.D., Van Auken K., Ramsey J., Siegele D.A., Chisholm R.L., Fey P., Aspromonte M.C., Nugnes M.V., Quaglia F., Tosatto S., Giglio M., Nadendla S., Antonazzo G., Attrill H., Dos Santos G., Marygold S., Strelets V., Tabone C.J., Thurmond J., Zhou P., Ahmed S.H., Asanitthong P., Luna Buitrago D., Erdol M.N., Gage M.C., Ali Kadhum M., Li K.Y.C., Long M., Michalak A., Pesala A., Pritazahra A., Saverimuttu S.C.C., Su R., Thurlow K.E., Lovering R.C., Logie C., Oliferenko S., Blake J., Christie K., Corbani L., Dolan M.E., Drabkin H.J., Hill D.P., Ni L., Sitnikov D., Smith C., Cuzick A., Seager J., Cooper L., Elser J., Jaiswal P., Gupta P., Jaiswal P., Naithani S., Lera-Ramirez M., Rutherford K., Wood V., De Pons J.L., Dwinell M.R., Hayman G.T., Kaldunski M.L., Kwitek A.E., Laulederkind S.J.F., Tutaj M.A., Vedi M., Wang S.J., D’Eustachio P., Aimo L., Axelsen K., Bridge A., Hyka-Nouspikel N., Morgat A., Aleksander S.A., Cherry J.M., Engel S.R., Karra K., Miyasato S.R., Nash R.S., Skrzypek M.S., Weng S., Wong E.D., Bakker E., Berardini T.Z., Reiser L., Auchincloss A., Axelsen K., Argoud-Puy G., Blatter M.C., Boutet E., Breuza L., Bridge A., Casals-Casas C., Coudert E., Estreicher A., Livia Famiglietti M., Feuermann M., Gos A., Gruaz-Gumowski N., Hulo C., Hyka-Nouspikel N., Jungo F., Le Mercier P., Lieberherr D., Masson P., Morgat A., Pedruzzi I., Pourcel L., Poux S., Rivoire C., Sundaram S., Bateman A., Bowler-Barnett E., Bye-A-Jee H., Denny P., Ignatchenko A., Ishtiaq R., Lock A., Lussi Y., Magrane M., Martin M.J., Orchard S., Raposo P., Speretta E., Tyagi N., Warner K., Zaru R., Diehl A.D., Lee R., Chan J., Diamantakis S., Raciti D., Zarowiecki M., Fisher M., James-Zorn C., Ponferrada V., Zorn A., Ramachandran S., Ruzicka L., Westerfield M. The Gene Ontology knowledgebase in 2023. Genetics. 2023; 224 (1): iyad031. doi: 10.1093/genetics/iyad031
  12. Циркин В.И., Коротаева Ю.В. Участие протеинкиназ а, в, с и d в регуляции сократимости кардиомиоцитов (обзор. Сообщение II). Журнал медико-биологических исследований. 2015; 3: 55–65. [Cirkin V.I., Korotaeva J.V. Uchastie proteinkinaz a, v, s i d v reguljacii sokratimosti kardiomiocitov (obzor. Soobshhenie II). Zhurnal mediko-biologicheskih issledovanij. 2015; 3: 55–65 (in Russian)]
  13. Ao H., Liu B., Li H., Lu L. Egr1 mediates retinal vascular dysfunction in diabetes mellitus via promoting p53 transcription. J. Cell Mol. Med. 2019; 23 (5): 3345–56. doi: 10.1111/jcmm.14225
  14. Karege F., Perroud N., Schürhoff F., Méary A., Marillier G., Burkhardt S., Ballmann E., Fernandez R., Jamain S., Leboyer M., La Harpe R., Malafosse A. Association of AKT1 gene variants and protein expression in both schizophrenia and bipolar disorder. Genes Brain Behav. 2010; 9 (5): 503–11. doi: 10.1111/j.1601-183X.2010.00578.x
  15. Huang X., Liu G., Guo J., Su Z. The PI3K/AKT pathway in obesity and type 2 diabetes. Int. J. Biol. Sci. 2018; 14 (11): 1483–96. doi: 10.7150/ijbs.27173
  16. Lee M.Y., Luciano A.K., Ackah E., Rodriguez-Vita J., Bancroft T.A., Eichmann A., Simons M., Kyriakides T.R., Morales-Ruiz M., Sessa W.C. Endothelial Akt1 mediates angiogenesis by phosphorylating multiple angiogenic substrates. Proc Natl Acad Sci USA. 2014; 111 (35): 12865–70. doi: 10.1073/pnas.1408472111
  17. Zhang M., Yang J., Zhao X., Zhao Y., Zhu S. Network pharmacology and molecular docking study on the active ingredients of qidengmingmu capsule for the treatment of diabetic retinopathy. Sci Rep. 2021; 11 (1): 7382. doi: 10.1038/s41598-021-86914-8
  18. Costanzo M.C., von Grotthuss M., Massung J., Jang D., Caulkins L., Koesterer R., Gilbert C., Welch R.P., Kudtarkar P., Hoang Q., Boughton A.P., Singh P., Sun Y., Duby M., Moriondo A., Nguyen T., Smadbeck P., Alexander B.R., Brandes M., Carmichael M., Dornbos P., Green T., Huellas-Bruskiewicz K.C., Ji Y., Kluge A., McMahon A.C., Mercader J.M., Ruebenacker O., Sengupta S., Spalding D., Taliun D. AMP-T2D Consortium. Smith P., Thomas M.K., Akolkar B., Brosnan M.J., Cherkas A., Chu A.Y., Fauman E.B., Fox C.S., Kamphaus T.N., Miller M.R., Nguyen L., Parsa A., Reilly D.F., Ruetten H., Wholley D., Zaghloul N.A., Abecasis G.R., Altshuler D., Keane T.M., McCarthy M.I., Gaulton K.J., Florez J.C., Boehnke M., Burtt N.P., Flannick J. The Type 2 Diabetes Knowledge Portal: An open access genetic resource dedicated to type 2 diabetes and related traits. Cell Metab. 2023; 35 (4): 695–710.e6. doi: 10.1016/j.cmet.2023.03.001
  19. Sun Y., Gao C., Liu H., Liu X., Yue T. Exploring the mechanism by which aqueous Gynura divaricata inhibits diabetic foot based on network pharmacology, molecular docking and experimental verification. Mol. Med. 2023; 29 (1): 11. doi: 10.1186/s10020-023-00605-w. PMID: 36670362
  20. Zhao J., Zeng Z. Combined effects of AKT serine/threonine kinase 1 polymorphisms and environment on congenital heart disease risk: A case-control study. Medicine (Baltimore). 2020; 99 (26): e20400. doi: 10.1097/MD.0000000000020400
  21. Millischer V., Matheson G.J., Martinsson L., Römer Ek I., Schalling M., Lavebratt C., Backlund L. AKT1 and genetic vulnerability to bipolar disorder. Psychiatry Res. 2020; 284: 112677. doi: 10.1016/j.psychres.2019.
  22. Maruei-Milan R., Saravani M., Heidari Z., Asadi-Tarani M., Salimi S. Effects of the MTOR and AKT1 genes polymorphisms on papillary thyroid cancer development. IUBMB Life. 2020; 72 (12): 2601–10. doi: 10.1002/iub.238
  23. Li Y., Zhu L., Yao H., Zhang Y., Kong X., Chen L., Song Y., Mu A., Li X. Association of Inflammation-Related Gene Polymorphisms With Susceptibility and Radiotherapy Sensitivity in Head and Neck Squamous Cell Carcinoma Patients in Northeast China. Front Oncol. 2021; 11: 651632. doi: 10.3389/fonc.2021.651632

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».