Multivalued Classification of Computer Attacks Using Artificial Neural Networks with Multiple Outputs
- Authors: Shelukhin O.I.1, Rakovsky D.I.1
-
Affiliations:
- Moscow Technical University of Communications and Informatics
- Issue: Vol 9, No 4 (2023)
- Pages: 97-113
- Section: Articles
- URL: https://journal-vniispk.ru/1813-324X/article/view/254390
- DOI: https://doi.org/10.31854/1813-324X-2023-9-4-97-113
- ID: 254390
Cite item
Full Text
Abstract
Modern computer networks (CN), having a complex and often heterogeneous structure, generate large volumes of multi-dimensional multi-label data. Accounting for information about multi-label experimental data (ED) can improve the efficiency of solving a number of information security problems: from CN profiling to detecting and preventing computer attacks on CN. The aim of the work is to develop a multi-label artificial neural network (ANN) architecture for detecting and classifying computer attacks in multi-label ED, and its comparative analysis with known analogues in terms of binary metrics for assessing the quality of classification. A formalization of ANN in terms of matrix algebra is proposed, which allows taking into account the case of multi-label classification and the new architecture of ANN with multiple output using the proposed formalization. The advantage of the proposed formalization is the conciseness of a number of entries associated with the ANN operating mode and learning mode. Proposed architecture allows solving the problems of detecting and classifying multi-label computer attacks, on average, 5% more efficiently than known analogues. The observed gain is due to taking into account multi-label patterns between class labels at the training stage through the use of a common first layer. The advantages of the proposed ANN architecture are scalability to any number of class labels and fast convergence.
About the authors
O. I. Shelukhin
Moscow Technical University of Communications and Informatics
Email: sheluhin@mail.ru
ORCID iD: 0000-0001-7564-6744
D. I. Rakovsky
Moscow Technical University of Communications and Informatics
Email: Prophet_alpha@mail.ru
ORCID iD: 0000-0001-7689-4678
References
- Большаков А.С. Губанкова Е.В. Обнаружение аномалий в компьютерных сетях с использованием методов машинного обучения // REDS: Телекоммуникационные устройства и системы. 2020. Т. 10. № 1. С. 37‒42.
- Sheluhin O.I., Rakovskiy D.I. Multi-Label Learning in Computer Networks // Proceedings of the Conference at 2023 Systems of Signals Generating and Processing in the Field of on Board Communications (Moscow, Russian Federation, 14‒16 March 2023). IEEE, 2023. doi: 10.1109/IEEECONF56737.2023.10092157
- Чечулин А.А. Проблемы сбора корректной и непротиворечивой информации о состоянии компьютерной сети // Информатизация и связь. 2023. № 1. С. 91‒94. doi: 10.34219/2078-8320-2023-14-1-91-94
- Шелухин О.И., Раковский Д.И. Прогнозирование профиля функционирования компьютерной системы на основе многозначных закономерностей // Вопросы кибербезопасности. 2022. № 6(52). С. 53‒70. doi: 10.21681/2311-3456-2022-6-53-70
- Sheluhin O.I., Osin A.V., Rakovsky D.I. New Algorithm for Predicting the States of a Computer Network Using Multivalued Dependencies // Automatic Control and Computer Sciences. 2023. Vol. 57. Iss. 1. PP. 48–60. doi: 10.3103/S0146411623010091
- Rakovskiy D.I. Analysis of the problem of multivalued of class labels on the security of computer networks» // Synchroinfo journal. 2022. Iss. 6. PP. 10‒17. doi: 10.36724/2664-066X-2022-8-6-10-17
- Васильев В.И., Вульфин А.М., Гвоздев В.Е., Картак В.М., Атарская Е.А. Обеспечение информационной безопасности киберфизических объектов на основе прогнозирования и обнаружения аномалий их состояния // Системы управления, связи и безопасности. 2021. № 6. С. 90‒119. doi: 10.24412/2410-9916-2021-6-90-119
- Sheluhin O.I., Barkov V.V., Sekretarev S.A. The online classification of the mobile applications traffic using data mining techniques // T-Comm. 2019. Т. 13. № 10. С. 60‒67. doi: 10.24411/2072-8735-2018-10317
- Шелухин О.И., Барков В.В., Полковников М.В. Классификация зашифрованного трафика мобильных приложений методом машинного обучения // Вопросы кибербезопасности. 2018. № 4(28). С. 21‒28. doi: 10.21681/2311-3456-2018-4-21-28
- Ismailov V.E. A three layer neural network can represent any multivariate function // Journal of Mathematical Analysis and Applications. 2023. Vol. 523. Iss. 1. P. 127096. doi: 10.1016/j.jmaa.2023.127096
- Vaswani A., Shazeer N., Parmar N., Uszkoreit J., Jones L., Gomez A.N., et al. Attention Is All You Need // arXiv:1706.03762v7. 2017. doi: 10.48550/arXiv.1706.03762
- Elbayad M., Besacier L., Verbeek J. Pervasive Attention: 2D Convolutional Neural Networks for Sequence-to-Sequence Prediction // arXiv:1808.03867v3. 2018. doi: 10.48550/arXiv.1808.03867
- Евграфов В.А., Ильюшин Е.А. Спайковые нейронные сети // International Journal of Open Information Technologies. 2021. Т. 9. № 7. С. 21‒31.
- Trentin E. Multivariate Density Estimation with Deep Neural Mixture Models // Neural Processing Letters. 2023. Vol. 53. Iss. 2. PP. 1‒17. doi: 10.1007/s11063-023-11196-2
- Воронцов К.В. Математические методы обучения по прецедентам (теория обучения машин). URL: http://www.machinelearning.ru/wiki/images/6/6d/Voron-ML-1.pdf (дата обращения 17.05.2023)
- Молодцов Д.А. Сравнение и продолжение многозначных зависимостей // Нечеткие системы и мягкие вычисления. 2016. Т. 11. № 2. С. 115–145.
- Olson D.L., Araz Ö.M. Cluster Analysis // Data Mining and Analytics in Healthcare Management. International Series in Operations Research & Management Science. Cham: Springer, 2023. Vol. 341. PP. 53–68. doi: 10.1007/978-3-031-28113-6_5
- Молодцов Д.А., Осин А.В. Новый метод применения многозначных закономерностей // Нечеткие системы и мягкие вычисления. 2020. Т. 15. № 2. С. 83‒95. doi: 10.26456/fssc72
- Кафтанников И.Л., Парасич А.В. Проблемы формирования обучающей выборки в задачах машинного обучения // Вестник Южно-Уральского государственного университета. Серия: Компьютерные технологии, управление, радиоэлектроника. 2016. Т. 16. № 3. С. 15‒24. doi: 10.14529/ctcr160302
- Javed R.K., Ayub N., Shiraz M. A Novel Approach Using Deep Learning for Network Based Intrusion Detection System // Thesis for: MS CS Advisor: Nasir Ayub and Prof. Dr. Muhammad Shiraz. doi: 10.13140/RG.2.2.21108.01922
- Camargo J.T.F., Veraszto E.V., Barreto G., Amaral S.F Neural Networks and the Study of Time Series: An Application in Engineering Education // Journal of Mechanics Engineering and Automation. 2015. Vol. 5. P. 2159-5275153-160. doi: 10.17265/2159-5275/2015.03.003
- Andrychowicz M., Denil M., Gómez S., Hoffman M., Pfau D., Schaul T., et al. Learning to learn by gradient descent by gradient descent // arXiv:1606.04474v2. 2016. doi: 10.48550/arXiv.1606.04474
- Sheluhin O.I., Rybakov S.Y., Vanyushina A.V. Detection of Network Anomalies with the Method of Fixing Jumps of the Fractal Dimension in the Online Mode // Wave Electronics and Its Application in Information and Telecommunication Systems. 2022. Vol. 5. Iss. 1. PP. 430‒435.
- Kox J.H.A.M., van der Zwan J.S, Groenewoud J.H., Runhaar J., Bierma-Zeinstra S.M.A., Bakker E.J.M., et al. Predicting late dropout from nursing education or early dropout from the profession // Science Talks. 2022. Vol. 5. P. 100106. doi: 10.1016/j.sctalk.2022.100106
- Lamia A.N.M. Role of data normalization in k-means algorithm results // Al-Kadhum 2nd International Conference on Modern Applications of Information and Communication Technology (Baghdad, Iraq, 8–9 December 2021). 2023. doi: 10.1063/5.0119267
- Avant T., Morgansen K.A. Analytical Bounds on the Local Lipschitz Constants of ReLU Networks // IEEE Transactions on Neural Networks and Learning Systems. 2023. PP. 1–12. doi: 10.1109/TNNLS.2023.3273228
- Bressan R. Building a multi-output Convolutional Neural Network with Keras // Medium. URL: https://towardsdatascience.com/building-a-multi-output-convolutional-neural-network-with-keras-ed24c7bc1178 (дата обращения 28.06.2023)
- Do N.-T., Hoang V.-P., Doan V.S. A novel non-profiled side channel attack based on multi-output regression neural network // Journal of Cryptographic Engineering. 2023. doi: 10.1007/s13389-023-00314-4
- Prasad J.R., Saikumar S., Subbarao B.V. Design and Development of Financial Fraud Detection using Machine Learning // International Journal of Emerging Trends in Engineering Research. 2020. Vol. 8. Iss. 9. PP. 5838‒5843. DOI:10.30534/ ijeter/2020/152892020
- Kitsune Network Attack Dataset // Kaggle. URL: https://www.kaggle.com/datasets/ymirsky/network-attack-dataset-kitsune (дата обращения 22.02.2023)
- Kitsune: An Ensemble of Autoencoders for Online Network Intrusion Detection // Github. URL: https://github.com/ymirsky/Kitsune-py (дата обращения 22.02.2023)
- Mirsky Y., Doitshman T., Elovici Y., Shabtai A. Kitsune: An Ensemble of Autoencoders for Online Network Intrusion Detection // arXiv:1802.09089. 2018. URL: https://arxiv.org/pdf/1802.09089.pdf (дата обращения 28.08.2023)
- Miyamoto K., Goto H., Ishibashi R., Han C., Ban T., Takahashi T. et al. Malicious Packet Classification Based on Neural Network Using Kitsune Features // Poceedings of the Second International Conference on Intelligent Systems and Pattern Recognition (ISPR, Hammamet, Tunisia, 24–26 March 2022). Communications in Computer and Information Science. Cham: Springer, 2022. Vol. 1589. PP. 306‒314. doi: 10.1007/978-3-031-08277-1_25
- Preprocessing data // Scikit-Learn. URL: https://scikit-learn.org/stable/modules/preprocessing.html (дата обращения 28.06.2023)
- Лукьянова О.А., Никитин О.Ю., Кунин А.С. Применение матричных фильтров и теории кос для процедурной генерации архитектур нейронных сетей // Вычислительные технологии. 2019. Т. 24. № 6. С. 69‒78. DOI:10.25743/ ICT.2019.24.6.009
- Scheliga D., Maeder P., Seeland M. Dropout Is NOT All You Need to Prevent Gradient Leakage // Proceedings of the 37th AAAI Conference on Artificial Intelligence and Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence and Thirteenth Symposium on Educational Advances in Artificial Intelligence (Washington, USA, 7–14 February 2023). AAAI Press, 2023. Vol. 37. № 8. PP. 9733‒9741. doi: 10.1609/aaai.v37i8.26163
Supplementary files

