Approach to Detecting Malicious Bots in the Vkontakte Social Network and Assessing Their Parameters

Cover Page

Cite item

Full Text

Abstract

The emergence of new varieties of bots in social networks and the improvement of their capabilities to imitate the natural behavior of real users represent a significant problem in the field of protection of social networks and online communities. This paper proposes a new approach to detecting and assessing the parameters of bots within the social network «VKontakte». The basis of the proposed approach is the creation of datasets using the method of «controlled purchase» of bots, which allows one to assess bots’ characteristics such as price, quality, and speed of action of bots, and using the Turing Test to assess how much users trust bots. In combination with traditional machine learning methods and features extracted from interaction graphs, text messages, and statistical distributions, it becomes possible to not only detect bots accurately but also predict their characteristics. This paper demonstrates that the trained machine learning model, based on the proposed approach, is robust to imbalanced data and can identify most types of bots as it has only a minor correlation with their main characteristics. The proposed approach can be used within the choice of countermeasures for the protection of social networks and for historical analysis, which allows not only to confirm the presence of bots but also to characterize the specifics of the attack.

About the authors

A. A. Chechulin

St. Petersburg Federal Research Center of the Russian Academy of Sciences; The Bonch-Bruevich Saint-Petersburg State University of Telecommunications

Email: chechulin.aa@sut.ru
ORCID iD: 0000-0001-7056-6972
SPIN-code: 1632-0938

M. V. Kolomeets

Newcastle University

Email: maksim.kalameyets@newcastle.ac.uk
ORCID iD: 0000-0002-7873-2733
SPIN-code: 1780-9045

References

  1. Cresci S. A decade of social bot detection // Communications of the ACM. 2020. Vol. 63. Iss. 10. PP. 72–83. DOI:10.1145/ 3409116
  2. Samoilenko S.A., Suvorova I. Artificial intelligence and deepfakes in strategic deception campaigns: The US and Russian experiences // In: The Palgrave Handbook of Malicious Use of AI and Psychological Security. Cham: Springer International Publishing, 2023. PP. 507–529. doi: 10.1007/978-3-031-22552-9_19
  3. Yang K., Menczer F. Anatomy of an AI-powered malicious social botnet // arXiv preprint arXiv:2307.16336.2023. doi: 10.48550/arXiv.2307.16336
  4. Gilani Z., Farahbakhsh R., Tyson G., Wang L., Crowcroft J. Of bots and humans (on twitter) // Proceedings of the International Conference on Advances in Social Networks Analysis and Mining. (New York, USA, 31 July 2017). Association for Computing Machinery, 2017. doi: 10.1145/3110025.3110090
  5. Orabi M., Mouheb D., Al Aghbari Z., Kamel I. Detection of bots in social media: a systematic review // Information Processing and Management. 2020. Vol. 57. Iss. 4. P. 102250. doi: 10.1016/j.ipm.2020.102250
  6. Коломеец М.В., Чечулин А.А. Метрики вредоносных социальных ботов // Труды учебных заведений связи. 2023. Т. 9. № 1. С. 94−104. doi: 10.31854/1813-324X-2023-9-1-94-104. EDN:HEFHFR
  7. Zegzhda P.D., Malyshev E.V., Pavlenko E.Y. The use of an artificial neural network to detect automatically managed accounts in social networks // Automatic Control and Computer Sciences. 2017. Vol. 51. Iss. 8. PP. 874–880. doi: 10.3103/S0146411617080296. EDN:UYCEUW
  8. Samokhvalov D.I. Machine learning-based malicious users' detection in the VKontakte social network // Proceedings of the Institute for System Programming of the RAS. 2020. Vol. 32. Iss. 3. PP. 109–117. doi: 10.15514/ISPRAS-2020-32(3)-10
  9. Kaveeva A.D., Gurin K.E. Artificial VKontakte profiles and their impact on the social network of users // Journal of Sociology and Social Anthropology. 2018. Vol. 21. Iss. 2. PP. 214–231. doi: 10.31119/jssa.2018.21.2.8. EDN:XZOGHB
  10. Kolomeets M., Tushkanova O., Levshun D., Chechulin A. Camouflaged bot detection using the friend list // Proceedings of the 29th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP, Valladolid, Spain, 10–12 March 2021). IEEE, 2021. PP. 253–259. doi: 10.1109/PDP52278.2021.00048. EDN:ZDXFHS
  11. Skorniakov K., Turdakov D., Zhabotinsky A. Make Social Networks Clean Again: Graph Embedding and Stacking Classifiers for Bot Detection // Proceedings of the Workshops, co-located with 27th ACM International Conference on Information and Knowledge Management (CIKM, Torino, Italy, 22 October 2018). ISP RAS, 2019. Vol. 2482. EDN:IHZECD
  12. Kolomeets M. MKMETRIC2022 – dataset with VKontakte bot identifiers and their metrics // guardeec/datasets. 2022. URL: https://github.com/guardeec/datasets#mkmetric2022 (Accessed 20.04.2024)
  13. Zhou Z., Guan H., Bhat M., Hsu J. Detecting Fake News with NLP: Challenges and Possible Directions. 2018. URL: https://meghu2791.github.io/Fake_News_Detection.pdf (Accessed 20.04.2024)

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».