Routing Task in Dynamic Fog Computing Network

Cover Page

Cite item

Full Text

Abstract

Relevance. In the context of traffic growth, transition to IMT-2030 networks and Telepresence services, the tasks of efficient management of network and computing resources occupy a special place. Fog computing as the next stage of decomposition of the architecture of multi access edge cloud computing is designed to radically change the models and methods of distributing computing tasks, influencing, among other things, the user-operator interaction models. At the moment, there is a whole layer of scientific problems for revealing the possibilities of fog computing. They can be divided into a number of areas, such as: study of models and methods for implementing services of ultra-reliable and ultra-low latency communications, defined in IMT-2020 networks; study of models and methods for ensuring quality of service, including quality of experience; study of methods for live migration of microservices, as well as groups of typical microservices; study of models and methods for distributing resources of dynamic fog computing while ensuring the stability of fog computing forms (clusters, nebulae); one of the potentially effective areas is research in the field of combining federated learning with dynamic fog computing. This paper solves a routing problem that can be attributed to the direction of infrastructure research in dynamic fog computing.Problem statement: research and develop the effective methods for routes determination in a dynamic fog computing network, including tasks of migrating microservices of telepresence services. Goal of the work: research and development of an effective method for ways determination to migrate microservices in communication networks using fog computing technologies, which could take into account not only the characteristics of connections (edges of the network graph), but also the computing capabilities and limitations of fog computing devices, as well as their features - the dynamics of computing devices. Methods: in order to test the proposed method, the program model was developed in the NS-3 modeling environment. Result. Analysis of the results showed the effectiveness of the proposed method within the framework of the task and various application scenarios. Novelty. A microservice migration method has been developed as a new routing protocol in a dynamic fog computing environment, which differs from the known ones in that this method ensures the interaction of fog computing devices for migrating microservices, while achieving a reduction in energy consumption by fog computing devices by 41% and reducing the share of lost packages on average up to 34%. Practical significance: The developed method can be used to implement fog computing in conditions of mobility of end devices in order to achieve the requirements of promising services of IMT-2030 networks.

About the authors

A. N. Volkov

The Bonch-Bruevich Saint Petersburg State University of Telecommunications

Email: artem.nv@sut.ru
ORCID iD: 0009-0002-4296-1822
SPIN-code: 1311-9824

References

  1. Кучерявый А.Е., Маколкина М.А., Парамонов А.И., Выборнова А.И., Мутханна А.С., Матюхин А.Ю. и др. Модельная сеть для исследований и обучения в области услуг телеприсутствия // Электросвязь. 2022. № 1. С. 14−20. doi: 10.34832/ELSV.2022.26.1.001. EDN:GBQWCV
  2. Волков А.Н., Мутханна А.С.А., Кучерявый А.Е., Бородин А.С., Парамонов А.И., Владимиров С.С. и др. Перспективные исследования сетей и услуг 2030 в лаборатории 6G Meganetlab СПбГУТ // Электросвязь. 2023. № 6. С. 5−14. doi: 10.34832/ELSV.2023.43.6.001. EDN:CJSYLS
  3. Volkov A., Muthanna A., Koucheryavy A. AI/machine learning for ultra-reliable low-latency communication // ITU News Magazine. 2020. Iss. 5. PP. 65−68.
  4. Лавшук О.А., Листопад Н.И. Метод маршрутизации в сетях IIoT с использованием кластеризации для протокола RPL // Проблемы физики, математики и техники. 2023. № 4(57). С. 74−80. doi: 10.54341/20778708_2023_4_57_74. EDN:RVSCGG
  5. Mariocco C., Doshi K., Guim Bernat F.G., Smith N.M., Spoczynski M., Verrall T., et all. Methods and apparatus to coordinate edge platforms. Patent US, no. US 2021/0014133 A1, 2021.
  6. Тефикова М.Р., Кузьмина Е.А., Волков А.Н. Определение маршрута миграции микросервиса в сети туманных вычислений // Информационные технологии и телекоммуникации. 2023. Т. 11. № 1. С. 50‒60. doi: 10.31854/2307-1303-2023-11-1-50-60. EDN:ETUDJB
  7. Cruz S., Aguiar A. Cooperative Localization in Vehicular Networks Dataset. IEEEDataPort. 2020. URL:https://ieee-dataport.org/open-access/cooperative-localization-vehicular-networks-dataset (Accessed 28 June 2024)
  8. From Images to 3D Shapes (FI3S). Kaggle. URL: https://www.kaggle.com/datasets/lehomme/from-images-to-3d-shapesfi3s (Accessed 20 April 2024)
  9. TikTok Dataset // Kaggle. URL: https://www.kaggle.com/datasets/yasaminjafarian/tiktokdataset (Accessed 20 April 2024).
  10. YouTube Faces With Facial Keypoints. Kaggle. URL: https://www.kaggle.com/datasets/selfishgene/youtube-faces-with-facial-keypoints (Accessed 20 April 2024)
  11. Google Scraped Image Dataset. Kaggle. URL: https://www.kaggle.com/datasets/duttadebadri/image-classification (Accessed 20 April 2024)
  12. Ateya A.A., Muthanna A., Gudkova I., Gaidamaka Y., Algarni A.D. Latency and energy-efficient multi-hop routing protocol for unmanned aerial vehicle networks // International Journal of Distributed Sensor Networks. 2019. Vol. 15 Iss. 8. doi: 10.1177/1550147719866392

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».