The Resampling Methods Direct Sequence Spread Spectrum Signal’s Demodulator Implementation

Cover Page

Cite item

Full Text

Abstract

Relevance. The direct spread spectrum signals are widely used in navigation and communication systems recently. These signals prevail in modern satellite navigation systems and are used in various communication systems with code division multiplexing in particularly. In this regard, the tasks of building direct spread spectrum signals’ demodulators have the key importance. Mach importance in the construction of demodulators is the problem chip rate variability.The purpose of the study is to propose a demodulator structure focused on solving this problem.Methods. The research is based on computer modeling methods.Decision. The paper proposes an approach to the construction of the direct spread spectrum signal’s demodulators based on modern methods of digital signal processing. It is shown that the main advantage of the proposed approach is the possibility of rebuilding the variable chip rate demodulators. Based on the results obtained, a scheme for the direct spread spectrum signals demodulator using resampling methods is proposed. Resampling, in turn, is implemented on the basis of polynomial interpolation using Lagrange polynomials. The structure of the resampler is proposed, similar to the structure of an interpolating filter with a finite impulse response. The presented simulation results show the effectiveness of the proposed approach.Novelty. It seems that the currently common methods of implementing direct spread spectrum signal in terms of delay synchronization do not sufficiently meet modern requirements. The implementation of delay synchronization schemes based on resampling is practically not discussed in well-known works. At the same time, modern methods and devices of digital signal processing make it possible to ensure an effective hardware implementation of the scheme in question. In this context, the approach proposed in the paper to the construction of demodulators seems to be very relevant.Significance. The results of the work can be used in the construction with direct spread spectrum signals’ demodulators for a wide range of communication and navigation systems. The synchronous sampling structure proposed in this paper is very promising, especially for variable chip rate demodulators.

About the authors

E. A. Brusin

Institute of Radio Navigation and Time JSC «Obukhov Plant»; The Bonch-Bruevich Saint-Petersburg State University of Telecommunications

Email: brusin.ea@sut.ru
ORCID iD: 0000-0002-6742-2705
SPIN-code: 2133-2463

References

  1. Gardner F.M. Interpolation in digital modems. Part I: Fundamentals // IEEE Transactions on Communications. 1993. Vol. 41. Iss. 3. PP. 501‒507. doi: 10.1109/26.221081
  2. Erup L., Gardner F.M., Harris R.A. Interpolation in digital modems. Part II: Implementation and performance // IEEE Transactions on Communications. 1993. Vol. 41. Iss. 6. PP. 998‒1008. doi: 10.1109/26.231921
  3. ГЛОНАСС. Принципы построения и функционирования. Под ред. А.И. Перова, В.Н. Харисова. М.: Радиотехника, 2010. 800 с.
  4. Кинкулькин И.Е. Глобальные навигационные спутниковые системы. Алгоритмы функционирования аппаратуры потребителя. М.: Изд-во «Едитория УРСС». 2018. 325 с.
  5. Rec. ITU-R TF.1153-4 (08/2015). The operation use of two-way satellite time and frequency transfer employing pseudorandom noise code.
  6. Gardner F.M. Phaselock Techniques. John Wiley & Sons, 2005. 450 p.
  7. Mengali U., D’Andrea A.N. Synchronization Technique for Digital Receivers. New York: Plenum Press, 1997.
  8. Meyer H., Moeneclaey M., Fechtel S.A. H. Digital Communication Receivers. New York: John Wiley & Sons., 1998.
  9. Farrow C.W. A continuously variable digital delay element // Proceedings of the IEEE International Symposium on Circuits and Systems (Espoo, Finland, 7‒9 June 1988). IEEE, 1988. PP. 2641‒2645. doi: 10.1109/ISCAS.1988.15483
  10. Hogenauer E. An economical class of digital filters for decimation and interpolation // IEEE Transactions on Acoustics, Speech, and Signal Processing. 1981. Vol. 29. Iss. 2. PP. 155‒162. doi: 10.1109/TASSP.1981.1163535
  11. Брусин Е.А. Реализация начальной синхронизации демодулятора сигнала с прямым расширением спектра с использованием частотной автоподстройки // XIII Международная научно-техническая и научно-методическая конференция «Актуальные проблемы инфотелекоммуникаций в науке и образовании» (Санкт-Петербург, Российская Федерация, 27–28 февраля 2024 г.). СПб.: Санкт-Петербургский государственный университет телекоммуникаций им. проф. М.А. Бонч-Бруевича, 2024. С. 504‒509. EDN:ZGFNZS

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».