Swarm Intelligence Algorithms for Solving Optimization Problems in Telecommunication Systems

Cover Page

Cite item

Full Text

Abstract

Relevance. In the modern world, telecommunications play a critically important role in supporting the digital economy. The complexity and scale of contemporary telecommunication networks ‒ characterized by high dynamism, heterogeneity, and continuously growing traffic ‒ necessitate the development and application of efficient optimization methods. Traditional analytical approaches often prove inadequate in addressing the combinatorial complexity and nonlinearity of problems arising in this domain, making the search for alternative solutions increasingly relevant. In this context, swarm intelligence algorithms represent a promising class of methods inspired by the collective behavior of biological organisms, capable of effectively solving complex optimization tasks.The aim of this study is to systematize and analyze current research devoted to the application of swarm intelligence algorithms in telecommunication networks. Particular attention is given to such methods as the Artificial Bee Colony (ABC) algorithm, Ant Colony Optimization (ACO), and the Grey Wolf Optimizer (GWO), as well as their modifications. The main objective of the research is to identify key trends and development directions of heuristic algorithms aimed at enhancing the performance, reliability, and resilience of telecommunication systems under increasing traffic loads and evolving network architectures.Scientific novelty lies in conducting a systematic review of recent publications focusing on the practical application of swarm intelligence algorithms in the field of telecommunications. A taxonomy of the considered methods is presented, and their core operational principles and effectiveness in solving specific optimization problems within this domain are analyzed. Special emphasis is placed on the adaptation and hybridization of algorithms to improve their performance in real-world network scenarios.The theoretical significance of the study consists in summarizing existing practices of applying bio-inspired optimization techniques in telecommunications, thereby opening up opportunities for further development of more efficient and scalable approaches to managing complex dynamic systems. The obtained results contribute to a deeper understanding of the potential of swarm intelligence algorithms in solving routing, resource allocation, network planning, and other critical problems typical of the modern digital economy.

About the authors

L. S. Adonin

The Bonch-Bruevich Saint Petersburg State University of Telecommunications

Email: adonin.ls@sut.ru

A. G. Vladyko

The Bonch-Bruevich Saint Petersburg State University of Telecommunications

Email: vladyko@sut.ru

References

  1. Ateya A.A., El-Latif A.A.A., Muthanna A., Volkov A., Koucheryavy A. Enabling Metaverse and Telepresence Services in 6G Networks. NY: River Publishers, 2025. 254 p. doi: 10.1201/9788770046749
  2. Zangana H.M., Sallow Z.B., Alkawaz M.H., Omar M. Unveiling the Collective Wisdom: A Review of Swarm Intelligence in Problem Solving and Optimization // Inform: Jurnal Ilmiah Bidang Teknologi Informasi Dan Komunikasi. 2024. Vol. 9. Iss. 2. PP. 101–110. doi: 10.25139/inform.v9i2.7934. EDN:WJAKIJ
  3. Mao S., Hu F., Lang J., Chen T., Cheng S. Comparative Study of Impacts of Typical Bio-Inspired Optimization Algorithms on Source Inversion Performance // Frontiers in Environmental Science. 2022. Vol. 10. P. 894255. doi: 10.3389/fenvs.2022.894255
  4. Duan H., Li P. Bio-inspired computation in unmanned aerial vehicles. Berlin, Heidelberg: Springer, 2014. doi: 10.1007/978-3-642-41196-0
  5. Hao Z., Huang H., Cai R. Bio-inspired Algorithms for TSP and Generalized TSP // Greco F. (ed.) Traveling Salesman Problem. IntechOpen, 2008. doi: 10.5772/5583
  6. Ateya A.A., Muthanna A., Vybornova A., Algarni A.D., Abuarqoub A., Koucheryavy Y., et al. Chaotic salp swarm algo-rithm for SDN multi-controller networks // Engineering Science and Technology, an International Journal. 2019. Vol. 22. Iss. 4. PP. 1001–1012. doi: 10.1016/j.jestch.2018.12.015. EDN:DOSQQF
  7. Alanis A.Y., Arana-Daniel N., López-Franco C. Bio-inspired Algorithms // Bio-inspired Algorithms for Engineering. Elsevier, 2018. PP. 1–14. doi: 10.1016/B978-0-12-813788-8.00001-9
  8. Subramanian S., Bhojaneet N., Madhnani H., Pant S., Kumar A., Kotecha K. A Comprehensive Review of Nature-Inspired Optimization Techniques and Their Varied Applications // Nature-Inspired Optimization Algorithms for Cyber-Physical Systems. IGI Global Scientific Publishing, 2025. PP. 105–174. doi: 10.4018/979-8-3693-6834-3.ch005
  9. Li P., Duan H. Bio-inspired Computation Algorithms // Bio-inspired Computation in Unmanned Aerial Vehicles. Berlin, Heidelberg: Springer, 2014. PP. 35–69. doi: 10.1007/978-3-642-41196-0_2
  10. Almufti M.S., Marqas R.B., Saeed V.A. Taxonomy of bio-inspired optimization algorithms // Journal of Advanced Computer Science & Technology. 2019. Vol. 8. Iss. 2. PP. 23–31. doi: 10.14419/jacst.v8i2.29402
  11. Zhang Z., Xu T., Zou K., Tan S., Sun Z. Multi-Objective Grey Wolf Optimizer Based on Improved Head Wolf Selection Strategy // Proceedings of the 43rd Chinese Control Conference (CCC, Kunming, China, 28‒31 July 2024). IEEE, 2024. PP. 1922–1927. doi: 10.23919/CCC63176.2024.10662658
  12. Peng Q., Zhan R., Wu H., Shi M. Comparative Study of Wolf Pack Algorithm and Artificial Bee Colony Algorithm: Performance Analysis and Optimization Exploration // International Journal of Swarm Intelligence Research. 2024. Vol. 15. Iss. 1. PP. 1–24. doi: 10.4018/IJSIR.352061
  13. Yang J., Gu W. A multi-stage time-backtracking grey wolf optimizer introducing a new hierarchy mechanism // Research Square. 2024. doi: 10.21203/rs.3.rs-4126903/v1
  14. Zhao S. Research on the Application of Swarm Behavior to Artificial Intelligence Systems // Applied and Computational Engineering. 2025. Vol. 120. PP. 158–163. doi: 10.54254/2755-2721/2025.19403. EDN:OGCKKC
  15. Tyagi N., Bhargava D., Ahlawat A. Implementation of Particle Swarm Optimization Algorithm Inspired by the Social Behaviour of Birds // Proceedings of the 4th International Conference on Technological Advancements in Computational Sciences (ICTACS, Tashkent, Uzbekistan, 13‒15 November 2024). IEEE, 2024. PP. 750–754. doi: 10.1109/ICTACS62700.2024.10840529
  16. Cai T., Zhang S., Ye Z., Zhou W., Wang M., He Q., Chen Z., et al. Cooperative metaheuristic algorithm for global optimization and engineering problems inspired by heterosis theory // Scientific Reports. 2024. Vol. 14. Iss. 1. P. 28876. doi: 10.1038/s41598-024-78761-0. EDN:QOGXNY
  17. Wu Y., Zhu X., Zhao W., Xia X. A Novel Particle Swarm Optimization Algorithm for Meta-Heuristic Analysis Mechanism Based on Population Learning Strategies and Adaptive Selection of Leadership Particles // Proceedings of the 11th International Conference on Data Science and Advanced Analytics (DSAA, San Diego, USA, 06‒10 October 2024). IEEE, 2024. PP. 1–9. doi: 10.1109/DSAA61799.2024.10722812
  18. Yazıcı A.M., Ömür G.A., Celik D.A. Applications and Future Perspectives of Swarm Intelligence in Unmanned and Autonomous Systems: Innovative Conceptual Approaches to Social Sciences // Sosyal Mucit Academic Review. 2024. Vol. 5. Iss. Innovative Conceptual Approaches to Social Sciences. PP. 106–130. doi: 10.54733/smar.1555925. EDN:QUVHXT
  19. Pachajoa G.M.M., Achicanoy W., Garzón Ramos D. Automating the Evaluation of the Scalability, Flexibility, and Robustness of Collective Behaviors for Robot Swarms // Proceedings of the Brazilian Symposium on Robotics (SBR) and 2024 Workshop on Robotics in Education (WRE, Goiania, Brazil, 13‒15 November 2024). Piscataway: IEEE, 2024. PP. 144–149. doi: 10.1109/SBR/WRE63066.2024.10837963
  20. Paköz B. Swarm Intelligence and Decentralized AI // Human Computer Interaction. 2024. Vol. 8. Iss. 1. PP. 97–100. doi: 10.62802/k7xhrd47. EDN:GLVTOB
  21. Yogi M.K., Chakravarthy A.S.N. Application of Variants of Nature-Inspired Optimization for Privacy Preservation in Cyber-Physical Systems // Nature-Inspired Optimization Algorithms for Cyber-Physical Systems. IGI Global Scientific Publishing, 2025. doi: 10.4018/979-8-3693-6834-3.ch009
  22. Cheng H., Zhou H., Shen Y. An improved grey wolf optimization algorithm based on bounded subpopulation research strategy // Journal of Physics: Conference Series. 2024. Vol. 2902. P. 012035. doi: 10.1088/1742-6596/2902/1/012035. EDN:ONSHBZ
  23. Zhang J., Dai Y., Shi Q. An improved grey wolf optimization algorithm based on scale-free network topology // Heliyon. 2024. Vol. 10. Iss. 16. P. e35958. doi: 10.1016/j.heliyon.2024.e35958. EDN:VACDIH
  24. Karaboga D. An idea based on honey bee swarm for numerical optimization. Technical Report-tr06. 2005. URL: https://abc.erciyes.edu.tr/pub/tr06_2005.pdf (Accessed 02.07.2025)
  25. Xiao W.-S., Li G., Liu C., Tan L. A novel chaotic and neighborhood search-based artificial bee colony algorithm for solving optimization problems // Scientific Reports. 2023. Vol. 13. P. 20496. doi: 10.1038/s41598-023-44770-8. EDN:MDLWOS
  26. Dorigo M., Maniezzo V., Colorni A. Ant system: An Autocatalytic Optimizing Process. 1991.
  27. Misra B., Chakraborty S. Ant Colony Optimization ‒ Recent Variants, Application and Perspectives // Dey N. (ed.) Applications of Ant Colony Optimization and its Variants: Case Studies and New Developments. Singapore: Springer Nature, 2024. PP. 1–17. doi: 10.1007/978-981-99-7227-2_1
  28. Olivari L. Reducing ACO Population Size to Increase Computational Speed // Tehnički glasnik. 2024. Vol. 18. Iss. 4. PP. 532–539. doi: 10.31803/tg-20230825125127. EDN:ZSJBRX
  29. Jiang H., Liu D., Liu X., Wu W., Jiang H. Efficient Grey Wolf Optimization: A High-Performance Optimizer with Reduced Memory Usage and Accelerated Convergence. 2024. doi: 10.20944/preprints202412.1974.v1
  30. Kaveh A., Yosefpoor H. Competition of Three Chaotic Meta-heuristic Algorithms with Physical Inspiration for Optimal Design of Truss Structures // Periodica Polytechnica Civil Engineering. 2024. Vol. 68. Iss. 4. PP. 1211–1228. doi: 10.3311/PPci.36853. EDN:SEVTPJ
  31. Rodriguez J.S., Parker R.B., Laird C.D., Nicholson B.L., Siirola J.D., Bynum M.L. Scalable Parallel Nonlinear Optimization with PyNumero and Parapint // INFORMS Journal on Computing. 2023. Vol. 35. Iss. 2. PP. 509–517. doi: 10.1287/ijoc.2023.1272. EDN:MQKQXF
  32. Fuentes P.A., Tirado F.F., Quintas D.G., Meana J.J., Muniz A.P. On the Fast Evaluation of Polynomials // Journal of Advances in Mathematics and Computer Science. 2022. Vol. 37. Iss. 6. PP. 20–35. doi: 10.9734/jamcs/2022/v37i630457
  33. Baichoo S., Ouzounis C.A. Computational complexity of algorithms for sequence comparison, short-read assembly and genome alignment // Biosystems. 2017. Vol. 156-157. PP. 72–85. doi: 10.1016/j.biosystems.2017.03.003
  34. Yang H. Analysis and study on path planning algorithms in the further mobile action // Journal of Physics: Conference Series. 2024. Vol. 2824. P. 012006. doi: 10.1088/1742-6596/2824/1/012006. EDN:YVOPJW
  35. Shanmugapriya M., Manivannan K.K. Compare the Performance of Meta-Heuristics Algorithm: A Review // Thanigaivelan R., Suchithra M., Kaliappan S., Mothilal T. (ed.) Metaheuristics Algorithm and Optimization of Engineering and Complex Systems. IGI Global Scientific Publishing, 2024. PP. 247–258. doi: 10.4018/979-8-3693-3314-3.ch013
  36. Cuevas E., Galvez J., Avalos O., Wario F. Machine Learning and Metaheuristic Computation. John Wiley & Sons, 2024. 437 p. doi: 10.1002/9781394229680
  37. Kulkarni V.R., Desai V. ABC and PSO: A comparative analysis // Proceedings of the International Conference on Computational Intelligence and Computing Research (ICCIC, Chennai, India, 15‒17 December 2016). IEEE, 2016. doi: 10.1109/ICCIC.2016.7919625
  38. Dorigo M., Stützle T. Ant Colony Optimization: Overview and Recent Advances // International Series in Operations Research & Management Science. Springer, 2019. PP. 311–351. doi: 10.1007/978-3-319-91086-4_10
  39. Faris H., Aljarah I., Al-Betar M.A., Mirjalili S. Grey wolf optimizer: a review of recent variants and applications // Neural Computing and Applications. 2018. Vol. 30. PP. 413‒435. doi: 10.1007/s00521-017-3272-5. EDN:JLGMRW
  40. Chaudhari K., Thakkar A. Travelling Salesman Problem: An Empirical Comparison Between ACO, PSO, ABC, FA and GA // Proceedings of the Conference on Emerging Research in Computing, Information, Communication and Applications (ERCICA). Advances in Intelligent Systems and Computing. Singapore: Springer, 2019. Vol. 906. PP. 397–405. doi: 10.1007/978-981-13-6001-5_32
  41. Negi G., Kumar A., Pant S., Ram M. GWO: a review and applications // International Journal of System Assurance Engineering and Management. 2020. Vol. 12. P. 1–8. doi: 10.1007/s13198-020-00995-8
  42. Seyyedabbasi A., Kiani F. I-GWO and Ex-GWO: improved algorithms of the Grey Wolf Optimizer to solve global optimization problems // Engineering with Computers. 2021. Vol. 37. PP. 509‒532. doi: 10.1007/s00366-019-00837-7
  43. Миронов А.А., Файзуллин Р.В., Кузикова А.В. Оптимизация параметра величины колонии в муравьином алгоритме для решения задачи маршрутизации в сетях связи // Интеллектуальные системы в производстве. 2024. Т. 22. № 2. С. 63–68. doi: 10.22213/2410-9304-2024-2-63-68. EDN:YDLNPI
  44. Kathane K.A., Shete R.M., Nawkhare R., Damahe L.B., Jadhav N.N., Dehankar J.N. Optimizing Dynamic Source Routing Protocol Using Computational Intelligent Approach // Proceedings of the 4th International Conference on Computer, Communication, Control & Information Technology, C3IT, Hooghly, India, 28‒29 September 2024. IEEE, 2024. doi: 10.1109/C3IT60531.2024.10829484
  45. Kansal V., Al-Farouni M., Bansal S., Michaelson J., Kumar S., Veena C.H. A Novel Ant Colony Optimization Algorithm for Dynamic Routing in Communication Networks // Proceedings of the International Conference on Communication, Computer Sciences and Engineering (IC3SE, Gautam Buddha Nagar, India, 09‒11 May 2024). IEEE, 2024. PP. 1640–1645. doi: 10.1109/IC3SE62002.2024.10593344
  46. Razooqi Y., Al-Asfoor M., Abed M.H. Optimise Energy Consumption of Wireless Sensor Networks by using modified Ant Colony Optimization // Acta Technica Jaurinensis. 2024. Vol. 17. Iss. 3. PP. 111–117. doi: 10.14513/actatechjaur.00742. EDN:CJUYDE
  47. Kumar R., Kumar K., Sharma S. Burst Formation and Burst Assignment to Ingress Nodes in Optical Burst Switching Network Using ABC // International Journal of Electronics and Communication Engineering. 2023. Vol. 10. Iss. 10. PP. 25‒39. doi: 10.14445/23488549/ijece-v10i10p103. EDN:YRWAEA
  48. Jierui L. Research on the Application of Ant Colony Algorithm in Optimizing Transportation Routes in Cold Chain Logistics // Proceedings of the 2nd International Conference on Mechatronics, IoT and Industrial Informatics (ICMIII, Melbourne, Australia, 12‒14 June 2024). IEEE, 2024. PP. 238–243. doi: 10.1109/ICMIII62623.2024.00050
  49. Umar M.M., Mohammed A., Abdulazeez A. Review of QoS-aware resource allocation schemes for 5g networks // Dutse Journal of Pure and Applied Sciences. 2024. Vol. 10. Iss. 3c. PP. 296–303. doi: 10.4314/dujopas.v10i3c.28. EDN:YKTOHU
  50. Bikkasani D.C., Yerabolu M.R. AI-Driven 5G Network Optimization: A Comprehensive Review of Resource Allocation, Traffic Management, and Dynamic Network Slicing // American Journal of Artificial Intelligence. 2024. Vol. 8. Iss. 2. PP. 55–62. doi: 10.11648/j.ajai.20240802.14. EDN:AOHEEN
  51. Zahoor S., Javaid S., Javaid N., Ashraf M., Ishmanov F., Afzal M.K. Cloud–Fog–Based Smart Grid Model for Efficient Resource Management // Sustainability. 2018. Vol. 10. Iss. 6. P. 2079. doi: 10.3390/su10062079
  52. Zhang W., Tuo K. Research on Offloading Strategy for Mobile Edge Computing Based on Improved Grey Wolf Optimization Algorithm // Electronics. 2023. Vol. 12. Iss. 11. P. 2533. doi: 10.3390/electronics12112533. EDN:AYUJJB
  53. Liu W., Li C., Zheng A., Zheng Z., Zhang Z., Xiao Y. Fog Computing Resource-Scheduling Strategy in IoT Based on Artificial Bee Colony Algorithm // Electronics. 2023. Vol. 12. Iss. 7. P. 1511. doi: 10.3390/electronics12071511. EDN:EVPFUW
  54. Мутханна А.С.А. Интегральное решение проблемы размещения контроллеров и балансировки нагрузки: 2 // Труды учебных заведений связи. 2023. Т. 9. № 2. С. 81–93. doi: 10.31854/1813-324X-2023-9-2-81-93. EDN:FTJGMC
  55. Лисов А.А., Возмилов А.Г., Гундарев К.А., Кулганатов А.З. Применение алгоритма стаи серых волков и нейронных сетей для решения дискретных задач // Труды учебных заведений связи. 2024. T. 10. № 5. C. 80–91. DOI:10.31854/ 1813-324X-2024-10-5-24-35. EDN:BEODCG
  56. Волков А.Н. Динамические туманные вычисления и бессерверная архитектура: на пути к зеленым ИКТ// Труды учебных заведений связи. 2024. Т. 10. № 3. С. 24‒34. doi: 10.31854/1813-324X-2024-10-3-24-34. EDN:QOELMJ
  57. Gaikwad V., Naik A. An improved resource allocation architecture utilising swarm intelligence for mm-wave MIMO communication architecture // International Journal of Wireless and Mobile Computing. 2023. Vol. 25. Iss. 2. PP. 190–199. doi: 10.1504/ijwmc.2023.133070. EDN:VCBTHS
  58. Liang Y.-C. Artificial Intelligence for Dynamic Spectrum Management // Dynamic Spectrum Management: From Cognitive Radio to Blockchain and Artificial Intelligence. Singapore: Springer, 2020. PP. 147–166. doi: 10.1007/978-981-15-0776-2_6
  59. Alabi C.A., Idakwo M.A., Imoize A.L., Adamu T., Sur S.N. AI for spectrum intelligence and adaptive resource management // Sur S.N., Imoize A.L., Bhattacharya A., Kandar D., Banerjee J.S. (eds.) Artificial Intelligence for Wireless Communication Systems. CRC Press, 2024. 27 p. doi: 10.1201/9781003517689-3
  60. Khan K., Goodridge W. Swarm Intelligence-Driven Client Selection for Federated Learning in Cybersecurity applications // arXiv:2411.18877. 2024. doi: 10.48550/arXiv.2411.18877
  61. Zhang J., Wang H., Wang X. Application of artificial bee colony algorithm based on homogenization mapping and collaborative acquisition control in network communication security // PLoS One. 2024. Vol. 19. Iss. 7. P. e0306699. doi: 10.1371/journal.pone.0306699. EDN:BTHRFI
  62. Ma Y., Chen J., Lv W., Qiu X., Zhang Y., Liu W. An improved artificial bee colony algorithm to minimum propagation latency and balanced load for controller placement in Software Defined Network // Computer Networks. 2024. Vol. 250. P. 110600. doi: 10.1016/j.comnet.2024.110600. EDN:KRNCGH
  63. Pliatsios D. Comparison of Swarm Intelligence Methods for Joint Resource Orchestration in Open Radio Access Network // Proceedings of the 14th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP, Rome, Italy, 17‒19 July 2024). IEEE, 2024. PP. 632–637. doi: 10.1109/CSNDSP60683.2024.10636586
  64. Berlinski M. Ant Colony Algorithms Application for Telco Networks Performance with Multicriteria Optimization // Proceedings of the International Conference on Software, Telecommunications and Computer Networks (SoftCOM, Split, Croatia, 21‒23 September 2023). IEEE, 2023. doi: 10.23919/SoftCOM58365.2023.10271586
  65. Venugopal P.S., Bharathy K.R., Gurusamy R., Rajkumar. Optimization of Delay and Energy in Wireless Body Area Networks Using Swarm Intelligence Based Dynamic Bandwidth Allocation Algorithm // Proceedings of the International Conference on IoT Based Control Networks and Intelligent Systems (ICICNIS, Bengaluru, India, 17‒18 December 2024). IEEE, 2024. PP. 127–131. doi: 10.1109/ICICNIS64247.2024.10823293
  66. Zhao Y., Men L. Group Intelligence Optimization Algorithm of Adaptive Trigonometric Function and T-Distributed Perturbation Strategy // Proceedings of the 6th International Conference on Communications, Information System and Computer Engineering (CISCE, Guangzhou, China, 10‒12 May 2024). IEEE, 2024. PP. 740–744. doi: 10.1109/CISCE62493.2024.10653078
  67. Liu Y., Huo L., Wu J., Bashir A.K. Swarm Learning-Based Dynamic Optimal Management for Traffic Congestion in 6G-Driven Intelligent Transportation System // IEEE Transactions on Intelligent Transportation Systems. 2023. Vol. 24. Iss. 7. PP. 7831–7846. doi: 10.1109/tits.2023.3234444. EDN:ILDTNW
  68. Ahmad I., Qayum F., Rahman S.U., Srivastava G. Using Improved Hybrid Grey Wolf Algorithm Based on Artificial Bee Colony Algorithm Onlooker and Scout Bee Operators for Solving Optimization Problems // International Journal of Computational Intelligence Systems. 2024. Vol. 17. Iss. 1. P. 111. doi: 10.1007/s44196-024-00497-6. EDN:DJQIPZ
  69. Furio C., Lamberti L., Pruncu C.I. An Efficient and Fast Hybrid GWO-JAYA Algorithm for Design Optimization // Applied Sciences. 2024. Vol. 14. Iss. 20. P. 9610. doi: 10.3390/app14209610
  70. Li Y., Lian Z., Zhou K., Dai Y. A quasi-opposition learning and chaos local search based on walrus optimization for global optimization problems // Scientific Reports. 2025. Vol. 15. P. 2881. doi: 10.1038/s41598-025-85751-3. EDN:BZPYYV
  71. Sari D.W., Dwijayanti S., Suprapto B.Y. Ant Colony Optimization-Based Path Planning for Autonomous Vehicle Navigation Systems // Proceedings of the International Conference on Electrical Engineering and Computer Science (ICECOS, Palembang, Indonesia, 25‒26 September 2024). IEEE, 2024. PP. 135–140. doi: 10.1109/ICECOS63900.2024.10791115
  72. Alfa A.A., Misra S., Abayomi-Alli A., Arogundade O., Jonathan O., Ahuja R. Comparative Analysis of Intelligent Solutions Searching Algorithms of Particle Swarm Optimization and Ant Colony Optimization for Artificial Neural Networks Target Dataset // Proceedings of Second International Conference on Computing, Communications, and Cyber-Security. Lecture Notes in Networks and Systems. Singapore: Springer, 2021. Vol. 203. PP. 459–470. doi: 10.1007/978-981-16-0733-2_32
  73. Kalpana N. ABC Algorithm for Evaluating the Performance of the SVC and Optimal Power Flow // Proceedings of the International Conference on Recent Trends in Communication and Intelligent Systems (ICRTCIS, Rajasthan, India, 28‒29 April 2023). Algorithms for Intelligent Systems. Singapore: Springer Nature, 2023. PP. 37–47. doi: 10.1007/978-981-99-5792-7_3
  74. Almajidi A.M., Pawar V.P., Alammari A., Ali N.S. ABC-Based Algorithm for Clustering and Validating WSNs // Proceedings of the International Conference on Cybernetics, Cognition and Machine Learning Applications (ICCCMLA, Goa, India, 16–17 August 2019). Algorithms for Intelligent Systems. Singapore: Springer, 2020. PP. 117–125. doi: 10.1007/978-981-15-1632-0_13
  75. Ding W., Yao H., Ju H., Huang J., Jiang S., Chen Y. Pheromone-guided parallel rough hypercuboid attribute reduction algorithm // Applied Soft Computing. 2024. Vol. 156. P. 111479. doi: 10.1016/j.asoc.2024.111479. EDN:HKPVIE
  76. Warnakulasooriya K., Segev A. Comparative analysis of accuracy and computational complexity across 21 swarm intelligence algorithms // Evolutionary Intelligence. 2024. Vol. 18. P. 18. doi: 10.1007/s12065-024-00997-6. EDN:FHRUUA
  77. Khera V. Comparative Study of Evolutionary Algorithms // International Journal of Science and Research. 2023. Vol. 12. Iss. 6. PP. 836–840. doi: 10.21275/sr23610122607. EDN:LPWBXF
  78. Kalpana N. Innovative Method for Assessing Optimal Power Flow and SVC Performance Using the ABC Algorithm // Proceedings of the 6th International Conference on Communications and Cyber Physical Engineering (ICCCE, Hyderabad, India, 28–29 April 2023). Lecture Notes in Electrical Engineering. Singapore: Springer Nature, 2024. Vol. 1096. PP. 21–31. doi: 10.1007/978-981-99-7137-4_3
  79. Du H., Zhu Z., Gu S. Research on Optimization of Computer Network Routing Based on Ant Colony Algorithm // Proceedings of the 2nd International Conference on Artificial Intelligence and Autonomous Robot Systems (AIARS, Bristol, United Kingdom, 29‒31 July 2023). IEEE, 2023. PP. 365–368. doi: 10.1109/AIARS59518.2023.00080
  80. Makhadmeh S.N., Al-Betar M.A., Al-Obeidat F., Alomari O.A., Abasi A.K., Tubishat M., et al. A multi-objective grey wolf optimizer for energy planning problem in smart home using renewable energy systems // Sustainable Operations and Computers. 2024. Vol. 5. PP. 88–101. doi: 10.1016/j.susoc.2024.04.001. EDN:HSZMYI
  81. Makhadmeh S.N., Al-Betar M.A., Al-Obeidat F., Alomari O.A., Abasi A.K., Tubishat M., et al. A Multi-objective Grey Wolf Optimizer for Power Scheduling Problem in Smart Home Using Renewable Energy Systems // Research Square. 2023. doi: 10.21203/rs.3.rs-3771300/v1
  82. Huang X., Xu R., Yu W., Wu S. Evaluation and Analysis of Heuristic Intelligent Optimization Algorithms for PSO, WDO, GWO and OOBO // Mathematics. 2023. Vol. 11. Iss. 21. P. 4531. doi: 10.3390/math11214531. EDN:INHEUT
  83. Yadav U.K., Singh V.P. Systematically derived weights based order diminution of continuous systems using GWO algorithm // Journal of the Franklin Institute. 2022. Vol. 359. Iss. 17. P. 9902–9924. doi: 10.1016/j.jfranklin.2022.09.050. EDN:ZXUCUI
  84. Shyshatskyi A., Kashkevich S., Kyrychenko I., Khakhlyuk O., Kubrak V., Kоval A., et al. Methodical approach to assessing the state of hierarchical systems using a metaheuristic algorithm // Eastern-European Journal of Enterprise Technologies. 2024. Vol. 5. Iss. 4(131). PP. 82–88. doi: 10.15587/1729-4061.2024.311235. EDN:HSRFIL
  85. Shahakar M., Mahajan S.A., Patil L. Optimizing System Resources and Adaptive Load Balancing Framework Leveraging ACO and Reinforcement Learning Algorithms // Journal of Electrical Systems. 2024. Vol. 20. Iss. 1s. PP. 244–256. doi: 10.52783/jes.768. EDN:DTXCKX
  86. Cao B., Chen Y., Liu X., He H., Song H., Lv Z. Multiobjective Resource Allocation Strategy for Metaverse Resource Management // Proceedings of the International Conference on Metaverse Computing, Networking and Applications (MetaCom, Kyoto, Japan, 26‒28 June 2023). IEEE, 2023. PP. 564–570. doi: 10.1109/MetaCom57706.2023.00100
  87. Kambhampati R.T. AI Telco Research: Advancements in Telecommunications Scientific Discovery // International Journal for Research in Applied Science & Engineering Technology. 2024. Vol. 12. Iss. 9. PP. 1514–1519. doi: 10.22214/ijraset.2024.64339
  88. Jadon S.S., Tiwari R., Sharma H., Bansal J.C. Hybrid Artificial Bee Colony algorithm with Differential Evolution // Applied Soft Computing. 2017. Vol. 58. PP. 11–24. doi: 10.1016/j.asoc.2017.04.018
  89. Seyyedabbasi A., Tareq Tareq W.Z., Bacanin N. An Effective Hybrid Metaheuristic Algorithm for Solving Global Optimization Algorithms // Multimedia Tools and Applications. 2024. Vol. 83. PP. 85103–85138. doi: 10.1007/s11042-024-19437-9. EDN:HMWSUL
  90. Lehre P.K., Qin X. Self-adaptation Can Improve the Noise-tolerance of Evolutionary Algorithms // Proceedings of the 17th ACM/SIGEVO Conference on Foundations of Genetic Algorithms (FOGA, Potsdam, Germany, 30 August 2023 ‒ 1 September 2023). New York: Association for Computing Machinery, 2023. PP. 105–116. doi: 10.1145/3594805.3607128
  91. Lehre P.K., Qin X. Self-adaptation Can Help Evolutionary Algorithms Track Dynamic Optima // Proceedings of the Genetic and Evolutionary Computation Conference (GECCO, Lisbon Portugal, 15‒19 July 2023). New York: Association for Computing Machinery, 2023. PP. 1619–1627. doi: 10.1145/3583131.3590494
  92. Zhang Y., Cai Y. Adaptive dynamic self-learning grey wolf optimization algorithm for solving global optimization problems and engineering problems // Mathematical Biosciences and Engineering. 2024. Vol. 21. Iss. 3. PP. 3910–3943. doi: 10.3934/mbe.2024174. EDN:UGPDBW
  93. Barrion M.H., Bandala A., Maningo J.M., Dadios E., Naguib R. Advancing Robotic Swarms with Blockchain Technology: A Dynamic Two-Factor Authentication Consensus Framework // Research Square. 2024. doi: 10.21203/rs.3.rs-5301694/v1
  94. Yang H. Swarm Contract: A Multi-Sovereign Agent Consensus Mechanism // arXiv:2412.19256. 2024. DOI:10.48550/ arXiv.2412.19256
  95. Li Y. Quantum Ant Colony Algorithm for Solving the Traveling Salesman Problem: A Theoretical and Practical Analysis // Applied and Computational Engineering. 2024. Vol. 110. Iss. 1. PP. 175–181. doi: 10.54254/2755-2721/110/2024MELB0121
  96. Tajabadi M., Heider D. Fair swarm learning: Improving incentives for collaboration by a fair reward mechanism // Knowledge-Based Systems. 2024. Vol. 304. P. 112451. doi: 10.1016/j.knosys.2024.112451. EDN:UOAGIK
  97. Moustafa N. GH-Twin: Graph Learning Empowered Hierarchical Digital Twin for Optimizing Self-Healing Networks // Sustainable Machine Intelligence Journal. 2024. Vol. 8. PP. 35‒45. doi: 10.61356/smij.2024.8289. EDN:DNPELS
  98. Wang N., Wu Y., Lorenzo B., Liu B. Semantic-Aware Architecture Design for a Lifelong Swarm Metaverse // IEEE Internet of Things Journal. 2025. Vol. 12. Iss. 9. PP. 12468–12482. doi: 10.1109/JIOT.2024.3520518

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».