Swarm Intelligence Algorithms for Solving Optimization Problems in Telecommunication Systems
- Authors: Adonin L.S.1, Vladyko A.G.1
-
Affiliations:
- The Bonch-Bruevich Saint Petersburg State University of Telecommunications
- Issue: Vol 11, No 3 (2025)
- Pages: 7-24
- Section: COMPUTER SCIENCE AND INFORMATICS
- URL: https://journal-vniispk.ru/1813-324X/article/view/301082
- EDN: https://elibrary.ru/JUAAMB
- ID: 301082
Cite item
Full Text
Abstract
Keywords
About the authors
L. S. Adonin
The Bonch-Bruevich Saint Petersburg State University of Telecommunications
Email: adonin.ls@sut.ru
A. G. Vladyko
The Bonch-Bruevich Saint Petersburg State University of Telecommunications
Email: vladyko@sut.ru
References
- Ateya A.A., El-Latif A.A.A., Muthanna A., Volkov A., Koucheryavy A. Enabling Metaverse and Telepresence Services in 6G Networks. NY: River Publishers, 2025. 254 p. doi: 10.1201/9788770046749
- Zangana H.M., Sallow Z.B., Alkawaz M.H., Omar M. Unveiling the Collective Wisdom: A Review of Swarm Intelligence in Problem Solving and Optimization // Inform: Jurnal Ilmiah Bidang Teknologi Informasi Dan Komunikasi. 2024. Vol. 9. Iss. 2. PP. 101–110. doi: 10.25139/inform.v9i2.7934. EDN:WJAKIJ
- Mao S., Hu F., Lang J., Chen T., Cheng S. Comparative Study of Impacts of Typical Bio-Inspired Optimization Algorithms on Source Inversion Performance // Frontiers in Environmental Science. 2022. Vol. 10. P. 894255. doi: 10.3389/fenvs.2022.894255
- Duan H., Li P. Bio-inspired computation in unmanned aerial vehicles. Berlin, Heidelberg: Springer, 2014. doi: 10.1007/978-3-642-41196-0
- Hao Z., Huang H., Cai R. Bio-inspired Algorithms for TSP and Generalized TSP // Greco F. (ed.) Traveling Salesman Problem. IntechOpen, 2008. doi: 10.5772/5583
- Ateya A.A., Muthanna A., Vybornova A., Algarni A.D., Abuarqoub A., Koucheryavy Y., et al. Chaotic salp swarm algo-rithm for SDN multi-controller networks // Engineering Science and Technology, an International Journal. 2019. Vol. 22. Iss. 4. PP. 1001–1012. doi: 10.1016/j.jestch.2018.12.015. EDN:DOSQQF
- Alanis A.Y., Arana-Daniel N., López-Franco C. Bio-inspired Algorithms // Bio-inspired Algorithms for Engineering. Elsevier, 2018. PP. 1–14. doi: 10.1016/B978-0-12-813788-8.00001-9
- Subramanian S., Bhojaneet N., Madhnani H., Pant S., Kumar A., Kotecha K. A Comprehensive Review of Nature-Inspired Optimization Techniques and Their Varied Applications // Nature-Inspired Optimization Algorithms for Cyber-Physical Systems. IGI Global Scientific Publishing, 2025. PP. 105–174. doi: 10.4018/979-8-3693-6834-3.ch005
- Li P., Duan H. Bio-inspired Computation Algorithms // Bio-inspired Computation in Unmanned Aerial Vehicles. Berlin, Heidelberg: Springer, 2014. PP. 35–69. doi: 10.1007/978-3-642-41196-0_2
- Almufti M.S., Marqas R.B., Saeed V.A. Taxonomy of bio-inspired optimization algorithms // Journal of Advanced Computer Science & Technology. 2019. Vol. 8. Iss. 2. PP. 23–31. doi: 10.14419/jacst.v8i2.29402
- Zhang Z., Xu T., Zou K., Tan S., Sun Z. Multi-Objective Grey Wolf Optimizer Based on Improved Head Wolf Selection Strategy // Proceedings of the 43rd Chinese Control Conference (CCC, Kunming, China, 28‒31 July 2024). IEEE, 2024. PP. 1922–1927. doi: 10.23919/CCC63176.2024.10662658
- Peng Q., Zhan R., Wu H., Shi M. Comparative Study of Wolf Pack Algorithm and Artificial Bee Colony Algorithm: Performance Analysis and Optimization Exploration // International Journal of Swarm Intelligence Research. 2024. Vol. 15. Iss. 1. PP. 1–24. doi: 10.4018/IJSIR.352061
- Yang J., Gu W. A multi-stage time-backtracking grey wolf optimizer introducing a new hierarchy mechanism // Research Square. 2024. doi: 10.21203/rs.3.rs-4126903/v1
- Zhao S. Research on the Application of Swarm Behavior to Artificial Intelligence Systems // Applied and Computational Engineering. 2025. Vol. 120. PP. 158–163. doi: 10.54254/2755-2721/2025.19403. EDN:OGCKKC
- Tyagi N., Bhargava D., Ahlawat A. Implementation of Particle Swarm Optimization Algorithm Inspired by the Social Behaviour of Birds // Proceedings of the 4th International Conference on Technological Advancements in Computational Sciences (ICTACS, Tashkent, Uzbekistan, 13‒15 November 2024). IEEE, 2024. PP. 750–754. doi: 10.1109/ICTACS62700.2024.10840529
- Cai T., Zhang S., Ye Z., Zhou W., Wang M., He Q., Chen Z., et al. Cooperative metaheuristic algorithm for global optimization and engineering problems inspired by heterosis theory // Scientific Reports. 2024. Vol. 14. Iss. 1. P. 28876. doi: 10.1038/s41598-024-78761-0. EDN:QOGXNY
- Wu Y., Zhu X., Zhao W., Xia X. A Novel Particle Swarm Optimization Algorithm for Meta-Heuristic Analysis Mechanism Based on Population Learning Strategies and Adaptive Selection of Leadership Particles // Proceedings of the 11th International Conference on Data Science and Advanced Analytics (DSAA, San Diego, USA, 06‒10 October 2024). IEEE, 2024. PP. 1–9. doi: 10.1109/DSAA61799.2024.10722812
- Yazıcı A.M., Ömür G.A., Celik D.A. Applications and Future Perspectives of Swarm Intelligence in Unmanned and Autonomous Systems: Innovative Conceptual Approaches to Social Sciences // Sosyal Mucit Academic Review. 2024. Vol. 5. Iss. Innovative Conceptual Approaches to Social Sciences. PP. 106–130. doi: 10.54733/smar.1555925. EDN:QUVHXT
- Pachajoa G.M.M., Achicanoy W., Garzón Ramos D. Automating the Evaluation of the Scalability, Flexibility, and Robustness of Collective Behaviors for Robot Swarms // Proceedings of the Brazilian Symposium on Robotics (SBR) and 2024 Workshop on Robotics in Education (WRE, Goiania, Brazil, 13‒15 November 2024). Piscataway: IEEE, 2024. PP. 144–149. doi: 10.1109/SBR/WRE63066.2024.10837963
- Paköz B. Swarm Intelligence and Decentralized AI // Human Computer Interaction. 2024. Vol. 8. Iss. 1. PP. 97–100. doi: 10.62802/k7xhrd47. EDN:GLVTOB
- Yogi M.K., Chakravarthy A.S.N. Application of Variants of Nature-Inspired Optimization for Privacy Preservation in Cyber-Physical Systems // Nature-Inspired Optimization Algorithms for Cyber-Physical Systems. IGI Global Scientific Publishing, 2025. doi: 10.4018/979-8-3693-6834-3.ch009
- Cheng H., Zhou H., Shen Y. An improved grey wolf optimization algorithm based on bounded subpopulation research strategy // Journal of Physics: Conference Series. 2024. Vol. 2902. P. 012035. doi: 10.1088/1742-6596/2902/1/012035. EDN:ONSHBZ
- Zhang J., Dai Y., Shi Q. An improved grey wolf optimization algorithm based on scale-free network topology // Heliyon. 2024. Vol. 10. Iss. 16. P. e35958. doi: 10.1016/j.heliyon.2024.e35958. EDN:VACDIH
- Karaboga D. An idea based on honey bee swarm for numerical optimization. Technical Report-tr06. 2005. URL: https://abc.erciyes.edu.tr/pub/tr06_2005.pdf (Accessed 02.07.2025)
- Xiao W.-S., Li G., Liu C., Tan L. A novel chaotic and neighborhood search-based artificial bee colony algorithm for solving optimization problems // Scientific Reports. 2023. Vol. 13. P. 20496. doi: 10.1038/s41598-023-44770-8. EDN:MDLWOS
- Dorigo M., Maniezzo V., Colorni A. Ant system: An Autocatalytic Optimizing Process. 1991.
- Misra B., Chakraborty S. Ant Colony Optimization ‒ Recent Variants, Application and Perspectives // Dey N. (ed.) Applications of Ant Colony Optimization and its Variants: Case Studies and New Developments. Singapore: Springer Nature, 2024. PP. 1–17. doi: 10.1007/978-981-99-7227-2_1
- Olivari L. Reducing ACO Population Size to Increase Computational Speed // Tehnički glasnik. 2024. Vol. 18. Iss. 4. PP. 532–539. doi: 10.31803/tg-20230825125127. EDN:ZSJBRX
- Jiang H., Liu D., Liu X., Wu W., Jiang H. Efficient Grey Wolf Optimization: A High-Performance Optimizer with Reduced Memory Usage and Accelerated Convergence. 2024. doi: 10.20944/preprints202412.1974.v1
- Kaveh A., Yosefpoor H. Competition of Three Chaotic Meta-heuristic Algorithms with Physical Inspiration for Optimal Design of Truss Structures // Periodica Polytechnica Civil Engineering. 2024. Vol. 68. Iss. 4. PP. 1211–1228. doi: 10.3311/PPci.36853. EDN:SEVTPJ
- Rodriguez J.S., Parker R.B., Laird C.D., Nicholson B.L., Siirola J.D., Bynum M.L. Scalable Parallel Nonlinear Optimization with PyNumero and Parapint // INFORMS Journal on Computing. 2023. Vol. 35. Iss. 2. PP. 509–517. doi: 10.1287/ijoc.2023.1272. EDN:MQKQXF
- Fuentes P.A., Tirado F.F., Quintas D.G., Meana J.J., Muniz A.P. On the Fast Evaluation of Polynomials // Journal of Advances in Mathematics and Computer Science. 2022. Vol. 37. Iss. 6. PP. 20–35. doi: 10.9734/jamcs/2022/v37i630457
- Baichoo S., Ouzounis C.A. Computational complexity of algorithms for sequence comparison, short-read assembly and genome alignment // Biosystems. 2017. Vol. 156-157. PP. 72–85. doi: 10.1016/j.biosystems.2017.03.003
- Yang H. Analysis and study on path planning algorithms in the further mobile action // Journal of Physics: Conference Series. 2024. Vol. 2824. P. 012006. doi: 10.1088/1742-6596/2824/1/012006. EDN:YVOPJW
- Shanmugapriya M., Manivannan K.K. Compare the Performance of Meta-Heuristics Algorithm: A Review // Thanigaivelan R., Suchithra M., Kaliappan S., Mothilal T. (ed.) Metaheuristics Algorithm and Optimization of Engineering and Complex Systems. IGI Global Scientific Publishing, 2024. PP. 247–258. doi: 10.4018/979-8-3693-3314-3.ch013
- Cuevas E., Galvez J., Avalos O., Wario F. Machine Learning and Metaheuristic Computation. John Wiley & Sons, 2024. 437 p. doi: 10.1002/9781394229680
- Kulkarni V.R., Desai V. ABC and PSO: A comparative analysis // Proceedings of the International Conference on Computational Intelligence and Computing Research (ICCIC, Chennai, India, 15‒17 December 2016). IEEE, 2016. doi: 10.1109/ICCIC.2016.7919625
- Dorigo M., Stützle T. Ant Colony Optimization: Overview and Recent Advances // International Series in Operations Research & Management Science. Springer, 2019. PP. 311–351. doi: 10.1007/978-3-319-91086-4_10
- Faris H., Aljarah I., Al-Betar M.A., Mirjalili S. Grey wolf optimizer: a review of recent variants and applications // Neural Computing and Applications. 2018. Vol. 30. PP. 413‒435. doi: 10.1007/s00521-017-3272-5. EDN:JLGMRW
- Chaudhari K., Thakkar A. Travelling Salesman Problem: An Empirical Comparison Between ACO, PSO, ABC, FA and GA // Proceedings of the Conference on Emerging Research in Computing, Information, Communication and Applications (ERCICA). Advances in Intelligent Systems and Computing. Singapore: Springer, 2019. Vol. 906. PP. 397–405. doi: 10.1007/978-981-13-6001-5_32
- Negi G., Kumar A., Pant S., Ram M. GWO: a review and applications // International Journal of System Assurance Engineering and Management. 2020. Vol. 12. P. 1–8. doi: 10.1007/s13198-020-00995-8
- Seyyedabbasi A., Kiani F. I-GWO and Ex-GWO: improved algorithms of the Grey Wolf Optimizer to solve global optimization problems // Engineering with Computers. 2021. Vol. 37. PP. 509‒532. doi: 10.1007/s00366-019-00837-7
- Миронов А.А., Файзуллин Р.В., Кузикова А.В. Оптимизация параметра величины колонии в муравьином алгоритме для решения задачи маршрутизации в сетях связи // Интеллектуальные системы в производстве. 2024. Т. 22. № 2. С. 63–68. doi: 10.22213/2410-9304-2024-2-63-68. EDN:YDLNPI
- Kathane K.A., Shete R.M., Nawkhare R., Damahe L.B., Jadhav N.N., Dehankar J.N. Optimizing Dynamic Source Routing Protocol Using Computational Intelligent Approach // Proceedings of the 4th International Conference on Computer, Communication, Control & Information Technology, C3IT, Hooghly, India, 28‒29 September 2024. IEEE, 2024. doi: 10.1109/C3IT60531.2024.10829484
- Kansal V., Al-Farouni M., Bansal S., Michaelson J., Kumar S., Veena C.H. A Novel Ant Colony Optimization Algorithm for Dynamic Routing in Communication Networks // Proceedings of the International Conference on Communication, Computer Sciences and Engineering (IC3SE, Gautam Buddha Nagar, India, 09‒11 May 2024). IEEE, 2024. PP. 1640–1645. doi: 10.1109/IC3SE62002.2024.10593344
- Razooqi Y., Al-Asfoor M., Abed M.H. Optimise Energy Consumption of Wireless Sensor Networks by using modified Ant Colony Optimization // Acta Technica Jaurinensis. 2024. Vol. 17. Iss. 3. PP. 111–117. doi: 10.14513/actatechjaur.00742. EDN:CJUYDE
- Kumar R., Kumar K., Sharma S. Burst Formation and Burst Assignment to Ingress Nodes in Optical Burst Switching Network Using ABC // International Journal of Electronics and Communication Engineering. 2023. Vol. 10. Iss. 10. PP. 25‒39. doi: 10.14445/23488549/ijece-v10i10p103. EDN:YRWAEA
- Jierui L. Research on the Application of Ant Colony Algorithm in Optimizing Transportation Routes in Cold Chain Logistics // Proceedings of the 2nd International Conference on Mechatronics, IoT and Industrial Informatics (ICMIII, Melbourne, Australia, 12‒14 June 2024). IEEE, 2024. PP. 238–243. doi: 10.1109/ICMIII62623.2024.00050
- Umar M.M., Mohammed A., Abdulazeez A. Review of QoS-aware resource allocation schemes for 5g networks // Dutse Journal of Pure and Applied Sciences. 2024. Vol. 10. Iss. 3c. PP. 296–303. doi: 10.4314/dujopas.v10i3c.28. EDN:YKTOHU
- Bikkasani D.C., Yerabolu M.R. AI-Driven 5G Network Optimization: A Comprehensive Review of Resource Allocation, Traffic Management, and Dynamic Network Slicing // American Journal of Artificial Intelligence. 2024. Vol. 8. Iss. 2. PP. 55–62. doi: 10.11648/j.ajai.20240802.14. EDN:AOHEEN
- Zahoor S., Javaid S., Javaid N., Ashraf M., Ishmanov F., Afzal M.K. Cloud–Fog–Based Smart Grid Model for Efficient Resource Management // Sustainability. 2018. Vol. 10. Iss. 6. P. 2079. doi: 10.3390/su10062079
- Zhang W., Tuo K. Research on Offloading Strategy for Mobile Edge Computing Based on Improved Grey Wolf Optimization Algorithm // Electronics. 2023. Vol. 12. Iss. 11. P. 2533. doi: 10.3390/electronics12112533. EDN:AYUJJB
- Liu W., Li C., Zheng A., Zheng Z., Zhang Z., Xiao Y. Fog Computing Resource-Scheduling Strategy in IoT Based on Artificial Bee Colony Algorithm // Electronics. 2023. Vol. 12. Iss. 7. P. 1511. doi: 10.3390/electronics12071511. EDN:EVPFUW
- Мутханна А.С.А. Интегральное решение проблемы размещения контроллеров и балансировки нагрузки: 2 // Труды учебных заведений связи. 2023. Т. 9. № 2. С. 81–93. doi: 10.31854/1813-324X-2023-9-2-81-93. EDN:FTJGMC
- Лисов А.А., Возмилов А.Г., Гундарев К.А., Кулганатов А.З. Применение алгоритма стаи серых волков и нейронных сетей для решения дискретных задач // Труды учебных заведений связи. 2024. T. 10. № 5. C. 80–91. DOI:10.31854/ 1813-324X-2024-10-5-24-35. EDN:BEODCG
- Волков А.Н. Динамические туманные вычисления и бессерверная архитектура: на пути к зеленым ИКТ// Труды учебных заведений связи. 2024. Т. 10. № 3. С. 24‒34. doi: 10.31854/1813-324X-2024-10-3-24-34. EDN:QOELMJ
- Gaikwad V., Naik A. An improved resource allocation architecture utilising swarm intelligence for mm-wave MIMO communication architecture // International Journal of Wireless and Mobile Computing. 2023. Vol. 25. Iss. 2. PP. 190–199. doi: 10.1504/ijwmc.2023.133070. EDN:VCBTHS
- Liang Y.-C. Artificial Intelligence for Dynamic Spectrum Management // Dynamic Spectrum Management: From Cognitive Radio to Blockchain and Artificial Intelligence. Singapore: Springer, 2020. PP. 147–166. doi: 10.1007/978-981-15-0776-2_6
- Alabi C.A., Idakwo M.A., Imoize A.L., Adamu T., Sur S.N. AI for spectrum intelligence and adaptive resource management // Sur S.N., Imoize A.L., Bhattacharya A., Kandar D., Banerjee J.S. (eds.) Artificial Intelligence for Wireless Communication Systems. CRC Press, 2024. 27 p. doi: 10.1201/9781003517689-3
- Khan K., Goodridge W. Swarm Intelligence-Driven Client Selection for Federated Learning in Cybersecurity applications // arXiv:2411.18877. 2024. doi: 10.48550/arXiv.2411.18877
- Zhang J., Wang H., Wang X. Application of artificial bee colony algorithm based on homogenization mapping and collaborative acquisition control in network communication security // PLoS One. 2024. Vol. 19. Iss. 7. P. e0306699. doi: 10.1371/journal.pone.0306699. EDN:BTHRFI
- Ma Y., Chen J., Lv W., Qiu X., Zhang Y., Liu W. An improved artificial bee colony algorithm to minimum propagation latency and balanced load for controller placement in Software Defined Network // Computer Networks. 2024. Vol. 250. P. 110600. doi: 10.1016/j.comnet.2024.110600. EDN:KRNCGH
- Pliatsios D. Comparison of Swarm Intelligence Methods for Joint Resource Orchestration in Open Radio Access Network // Proceedings of the 14th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP, Rome, Italy, 17‒19 July 2024). IEEE, 2024. PP. 632–637. doi: 10.1109/CSNDSP60683.2024.10636586
- Berlinski M. Ant Colony Algorithms Application for Telco Networks Performance with Multicriteria Optimization // Proceedings of the International Conference on Software, Telecommunications and Computer Networks (SoftCOM, Split, Croatia, 21‒23 September 2023). IEEE, 2023. doi: 10.23919/SoftCOM58365.2023.10271586
- Venugopal P.S., Bharathy K.R., Gurusamy R., Rajkumar. Optimization of Delay and Energy in Wireless Body Area Networks Using Swarm Intelligence Based Dynamic Bandwidth Allocation Algorithm // Proceedings of the International Conference on IoT Based Control Networks and Intelligent Systems (ICICNIS, Bengaluru, India, 17‒18 December 2024). IEEE, 2024. PP. 127–131. doi: 10.1109/ICICNIS64247.2024.10823293
- Zhao Y., Men L. Group Intelligence Optimization Algorithm of Adaptive Trigonometric Function and T-Distributed Perturbation Strategy // Proceedings of the 6th International Conference on Communications, Information System and Computer Engineering (CISCE, Guangzhou, China, 10‒12 May 2024). IEEE, 2024. PP. 740–744. doi: 10.1109/CISCE62493.2024.10653078
- Liu Y., Huo L., Wu J., Bashir A.K. Swarm Learning-Based Dynamic Optimal Management for Traffic Congestion in 6G-Driven Intelligent Transportation System // IEEE Transactions on Intelligent Transportation Systems. 2023. Vol. 24. Iss. 7. PP. 7831–7846. doi: 10.1109/tits.2023.3234444. EDN:ILDTNW
- Ahmad I., Qayum F., Rahman S.U., Srivastava G. Using Improved Hybrid Grey Wolf Algorithm Based on Artificial Bee Colony Algorithm Onlooker and Scout Bee Operators for Solving Optimization Problems // International Journal of Computational Intelligence Systems. 2024. Vol. 17. Iss. 1. P. 111. doi: 10.1007/s44196-024-00497-6. EDN:DJQIPZ
- Furio C., Lamberti L., Pruncu C.I. An Efficient and Fast Hybrid GWO-JAYA Algorithm for Design Optimization // Applied Sciences. 2024. Vol. 14. Iss. 20. P. 9610. doi: 10.3390/app14209610
- Li Y., Lian Z., Zhou K., Dai Y. A quasi-opposition learning and chaos local search based on walrus optimization for global optimization problems // Scientific Reports. 2025. Vol. 15. P. 2881. doi: 10.1038/s41598-025-85751-3. EDN:BZPYYV
- Sari D.W., Dwijayanti S., Suprapto B.Y. Ant Colony Optimization-Based Path Planning for Autonomous Vehicle Navigation Systems // Proceedings of the International Conference on Electrical Engineering and Computer Science (ICECOS, Palembang, Indonesia, 25‒26 September 2024). IEEE, 2024. PP. 135–140. doi: 10.1109/ICECOS63900.2024.10791115
- Alfa A.A., Misra S., Abayomi-Alli A., Arogundade O., Jonathan O., Ahuja R. Comparative Analysis of Intelligent Solutions Searching Algorithms of Particle Swarm Optimization and Ant Colony Optimization for Artificial Neural Networks Target Dataset // Proceedings of Second International Conference on Computing, Communications, and Cyber-Security. Lecture Notes in Networks and Systems. Singapore: Springer, 2021. Vol. 203. PP. 459–470. doi: 10.1007/978-981-16-0733-2_32
- Kalpana N. ABC Algorithm for Evaluating the Performance of the SVC and Optimal Power Flow // Proceedings of the International Conference on Recent Trends in Communication and Intelligent Systems (ICRTCIS, Rajasthan, India, 28‒29 April 2023). Algorithms for Intelligent Systems. Singapore: Springer Nature, 2023. PP. 37–47. doi: 10.1007/978-981-99-5792-7_3
- Almajidi A.M., Pawar V.P., Alammari A., Ali N.S. ABC-Based Algorithm for Clustering and Validating WSNs // Proceedings of the International Conference on Cybernetics, Cognition and Machine Learning Applications (ICCCMLA, Goa, India, 16–17 August 2019). Algorithms for Intelligent Systems. Singapore: Springer, 2020. PP. 117–125. doi: 10.1007/978-981-15-1632-0_13
- Ding W., Yao H., Ju H., Huang J., Jiang S., Chen Y. Pheromone-guided parallel rough hypercuboid attribute reduction algorithm // Applied Soft Computing. 2024. Vol. 156. P. 111479. doi: 10.1016/j.asoc.2024.111479. EDN:HKPVIE
- Warnakulasooriya K., Segev A. Comparative analysis of accuracy and computational complexity across 21 swarm intelligence algorithms // Evolutionary Intelligence. 2024. Vol. 18. P. 18. doi: 10.1007/s12065-024-00997-6. EDN:FHRUUA
- Khera V. Comparative Study of Evolutionary Algorithms // International Journal of Science and Research. 2023. Vol. 12. Iss. 6. PP. 836–840. doi: 10.21275/sr23610122607. EDN:LPWBXF
- Kalpana N. Innovative Method for Assessing Optimal Power Flow and SVC Performance Using the ABC Algorithm // Proceedings of the 6th International Conference on Communications and Cyber Physical Engineering (ICCCE, Hyderabad, India, 28–29 April 2023). Lecture Notes in Electrical Engineering. Singapore: Springer Nature, 2024. Vol. 1096. PP. 21–31. doi: 10.1007/978-981-99-7137-4_3
- Du H., Zhu Z., Gu S. Research on Optimization of Computer Network Routing Based on Ant Colony Algorithm // Proceedings of the 2nd International Conference on Artificial Intelligence and Autonomous Robot Systems (AIARS, Bristol, United Kingdom, 29‒31 July 2023). IEEE, 2023. PP. 365–368. doi: 10.1109/AIARS59518.2023.00080
- Makhadmeh S.N., Al-Betar M.A., Al-Obeidat F., Alomari O.A., Abasi A.K., Tubishat M., et al. A multi-objective grey wolf optimizer for energy planning problem in smart home using renewable energy systems // Sustainable Operations and Computers. 2024. Vol. 5. PP. 88–101. doi: 10.1016/j.susoc.2024.04.001. EDN:HSZMYI
- Makhadmeh S.N., Al-Betar M.A., Al-Obeidat F., Alomari O.A., Abasi A.K., Tubishat M., et al. A Multi-objective Grey Wolf Optimizer for Power Scheduling Problem in Smart Home Using Renewable Energy Systems // Research Square. 2023. doi: 10.21203/rs.3.rs-3771300/v1
- Huang X., Xu R., Yu W., Wu S. Evaluation and Analysis of Heuristic Intelligent Optimization Algorithms for PSO, WDO, GWO and OOBO // Mathematics. 2023. Vol. 11. Iss. 21. P. 4531. doi: 10.3390/math11214531. EDN:INHEUT
- Yadav U.K., Singh V.P. Systematically derived weights based order diminution of continuous systems using GWO algorithm // Journal of the Franklin Institute. 2022. Vol. 359. Iss. 17. P. 9902–9924. doi: 10.1016/j.jfranklin.2022.09.050. EDN:ZXUCUI
- Shyshatskyi A., Kashkevich S., Kyrychenko I., Khakhlyuk O., Kubrak V., Kоval A., et al. Methodical approach to assessing the state of hierarchical systems using a metaheuristic algorithm // Eastern-European Journal of Enterprise Technologies. 2024. Vol. 5. Iss. 4(131). PP. 82–88. doi: 10.15587/1729-4061.2024.311235. EDN:HSRFIL
- Shahakar M., Mahajan S.A., Patil L. Optimizing System Resources and Adaptive Load Balancing Framework Leveraging ACO and Reinforcement Learning Algorithms // Journal of Electrical Systems. 2024. Vol. 20. Iss. 1s. PP. 244–256. doi: 10.52783/jes.768. EDN:DTXCKX
- Cao B., Chen Y., Liu X., He H., Song H., Lv Z. Multiobjective Resource Allocation Strategy for Metaverse Resource Management // Proceedings of the International Conference on Metaverse Computing, Networking and Applications (MetaCom, Kyoto, Japan, 26‒28 June 2023). IEEE, 2023. PP. 564–570. doi: 10.1109/MetaCom57706.2023.00100
- Kambhampati R.T. AI Telco Research: Advancements in Telecommunications Scientific Discovery // International Journal for Research in Applied Science & Engineering Technology. 2024. Vol. 12. Iss. 9. PP. 1514–1519. doi: 10.22214/ijraset.2024.64339
- Jadon S.S., Tiwari R., Sharma H., Bansal J.C. Hybrid Artificial Bee Colony algorithm with Differential Evolution // Applied Soft Computing. 2017. Vol. 58. PP. 11–24. doi: 10.1016/j.asoc.2017.04.018
- Seyyedabbasi A., Tareq Tareq W.Z., Bacanin N. An Effective Hybrid Metaheuristic Algorithm for Solving Global Optimization Algorithms // Multimedia Tools and Applications. 2024. Vol. 83. PP. 85103–85138. doi: 10.1007/s11042-024-19437-9. EDN:HMWSUL
- Lehre P.K., Qin X. Self-adaptation Can Improve the Noise-tolerance of Evolutionary Algorithms // Proceedings of the 17th ACM/SIGEVO Conference on Foundations of Genetic Algorithms (FOGA, Potsdam, Germany, 30 August 2023 ‒ 1 September 2023). New York: Association for Computing Machinery, 2023. PP. 105–116. doi: 10.1145/3594805.3607128
- Lehre P.K., Qin X. Self-adaptation Can Help Evolutionary Algorithms Track Dynamic Optima // Proceedings of the Genetic and Evolutionary Computation Conference (GECCO, Lisbon Portugal, 15‒19 July 2023). New York: Association for Computing Machinery, 2023. PP. 1619–1627. doi: 10.1145/3583131.3590494
- Zhang Y., Cai Y. Adaptive dynamic self-learning grey wolf optimization algorithm for solving global optimization problems and engineering problems // Mathematical Biosciences and Engineering. 2024. Vol. 21. Iss. 3. PP. 3910–3943. doi: 10.3934/mbe.2024174. EDN:UGPDBW
- Barrion M.H., Bandala A., Maningo J.M., Dadios E., Naguib R. Advancing Robotic Swarms with Blockchain Technology: A Dynamic Two-Factor Authentication Consensus Framework // Research Square. 2024. doi: 10.21203/rs.3.rs-5301694/v1
- Yang H. Swarm Contract: A Multi-Sovereign Agent Consensus Mechanism // arXiv:2412.19256. 2024. DOI:10.48550/ arXiv.2412.19256
- Li Y. Quantum Ant Colony Algorithm for Solving the Traveling Salesman Problem: A Theoretical and Practical Analysis // Applied and Computational Engineering. 2024. Vol. 110. Iss. 1. PP. 175–181. doi: 10.54254/2755-2721/110/2024MELB0121
- Tajabadi M., Heider D. Fair swarm learning: Improving incentives for collaboration by a fair reward mechanism // Knowledge-Based Systems. 2024. Vol. 304. P. 112451. doi: 10.1016/j.knosys.2024.112451. EDN:UOAGIK
- Moustafa N. GH-Twin: Graph Learning Empowered Hierarchical Digital Twin for Optimizing Self-Healing Networks // Sustainable Machine Intelligence Journal. 2024. Vol. 8. PP. 35‒45. doi: 10.61356/smij.2024.8289. EDN:DNPELS
- Wang N., Wu Y., Lorenzo B., Liu B. Semantic-Aware Architecture Design for a Lifelong Swarm Metaverse // IEEE Internet of Things Journal. 2025. Vol. 12. Iss. 9. PP. 12468–12482. doi: 10.1109/JIOT.2024.3520518
Supplementary files
