Mathematical Model of the MIMO-NOMA System

Cover Page

Cite item

Full Text

Abstract

Relevance of the Study. Modern next-generation mobile networks impose extremely high requirements on spectral efficiency, reliability, and robustness in urban environments with high user density. The MIMO-NOMA technology, despite its proven potential, requires a revision of existing models due to the need to account for users' spatial dynamics, polarization distortions, hardware nonlinearity, and channel state information (CSI) estimation errors. The lack of comprehensive models capable of simultaneously addressing these factors significantly limits the ability to effectively optimize systems in practical scenarios.Research Objective. The study aims to develop a comprehensive mathematical model of the MIMO-NOMA segment between the precoder and the summation scheme in the complex baseband domain, accounting for terminal mobility and orientation, antenna polarization, amplifier nonlinearities, and CSI errors, to analyze and optimize precoding and successive interference cancellation (SIC) algorithms.Research Methods. The modeling incorporates: stochastic processes (including the Ornstein–Uhlenbeck model and social force models) to describe user mobility; analytical geometry to represent the spatial orientation of antennas; electromagnetic propagation theory methods to model cross-polarization effects; and Saleh and Volterra models to describe power amplifier nonlinearities in the FR1 and FR2 frequency ranges.Research Results. A vector signal model was derived, incorporating the effects of terminal orientation, interference, polarization and nonlinear distortions, and CSI errors. Analytical expressions were obtained for evaluating SINR, SER, throughput, and energy efficiency, considering all distortions. A comparative analysis of the proposed model against existing standards (3GPP, ITU-R) and academic approaches (DL-based, IRS-assisted) demonstrated its superiority in terms of realism and analytical completeness.Scientific Novelty. For the first time, a mathematical model of the MIMO-NOMA system is proposed that simultaneously accounts for terminal dynamics, dual polarization, nonlinearities with memory effects, and multipath scenarios, providing an analytical description within a unified parameter space.Theoretical and Practical Significance. The model refines the description of the MIMO-NOMA channel and supports the optimization of precoders, summation schemes in the complex baseband domain, and SIC algorithms in next-generation mobile networks, particularly in conditions of high mobility and dense urban environments.

About the authors

I. V. Grishin

The Bonch-Bruevich Saint Petersburg State University of Telecommunications

Email: grishin.iv@sut.ru

G. A. Fokin

The Bonch-Bruevich Saint Petersburg State University of Telecommunications

Email: fokin.ga@sut.ru

A. A. Kalinkina

The Bonch-Bruevich Saint Petersburg State University of Telecommunications

Email: kalina110694@gmail.com

A. M. Sinilnikov

The M.I. Krivosheev National Research Center for Telecommunications, Saint Petersburg Branch

Email: sinilam01@gmail.com

References

  1. Ding Z., Lei X., Karagiannidis G.K., Schober R., Yuan J., Bhargava V.K. A Survey on Non-Orthogonal Multiple Access for 5G Networks: Research Challenges and Future Trends // IEEE Journal on Selected Areas in Communications. 2017. Vol. 35. Iss. 10. PP. 2181–2195. doi: 10.1109/JSAC.2017.2725519. EDN:YGQORJ
  2. Willems J., Corbetta A., Menkovski V., Toschi F. Pedestrian orientation dynamics from high-fidelity measurements // Scientific Reports. 2020. Vol. 10. Iss. 1. PP. 11653. doi: 10.1038/s41598-020-68287-6
  3. Helbing D., Molnar P. Social Force Model for Pedestrian Dynamics // Physical Review E. 1998. Vol. 51. Iss. 5. PP. 482–486. doi: 10.1103/PhysRevE.51.4282
  4. Ge Q., Sun Q., Li S.E., Zheng S., Wu W., Chen X. Numerically Stable Dynamic Bicycle Model for Discrete-Time Control // Proceedings of the Intelligent Vehicles Symposium Workshops (IV Workshops, Nagoya, Japan, 11–17 July 2021). IEEE, 2021. PP. 128–134. doi: 10.1109/IVWorkshops54471.2021.9669260
  5. Lai F., Huang C. Seventh-Degree Polynomial-Based Single Lane Change Trajectory Planning and Four-Wheel Steering Model Predictive Tracking Control for Intelligent Vehicles // Vehicles. 2024. Vol. 6. Iss. 4. PP. 2228–2250. doi: 10.3390/vehicles6040109. EDN:MERHQF
  6. Rec. ITU-R P.1411-12 (08/2023). Propagation data and prediction methods for the planning of short-range outdoor radio-communication systems and radio local area networks in the frequency range 300 MHz to 100 GHz.
  7. GPP TR 38.901 V18.0.0 (2023-12). Study on Channel Model for Frequencies from 0.5 to 100 GHz.
  8. Rec. ITU-R P.530-18 (09/2021). Propagation data and prediction methods required for the design of terrestrial line-of-sight systems.
  9. Rec. ITU-R P.833-10 (09/2021). Attenuation in vegetation.
  10. Rec. ITU-R P.838-3 (1992-1999-2003-2005). Specific attenuation model for rain for use in prediction methods.
  11. Molisch A.F. Wireless Communications. John Wiley & Sons, 2011. 884 p.
  12. Ma Z., Ai B., He R., Wang G., Zhong Z., Yang M. Impact of UAV Rotation on MIMO Channel Space-Time Correlation // Proceedings of the 92nd Vehicular Technology Conference (VTC2020-Fall, Victoria, Canada, 18 November 2020 – 16 December 2020). IEEE, 2021. doi: 10.1109/VTC2020-Fall49728.2020.9348811
  13. Zeng L., Cheng X., Wang C.-X., Yin X. A 3D Geometry-Based Stochastic Channel Model for UAV-MIMO Channels // Proceedings of the Wireless Communications and Networking Conference (WCNC, San Francisco, USA, 19–22 March 2017). IEEE, 2017. doi: 10.1109/WCNC.2017.7925794
  14. Wu Y., Gu Y., Wang Z. Efficient Channel Estimation for mmWave MIMO With Transceiver Hardware Impairments // IEEE Transactions on Vehicular Technology. 2019. Vol. 68. Iss. 10. PP. 9883–9895. doi: 10.1109/TVT.2019.2934167
  15. Beddiaf S., Khelil A., Khennoufa F., Kara F., Kaya H., Li X. A Unified Performance Analysis of Cooperative NOMA with Prac-tical Constraints: Hardware Impairment, Imperfect SIC and CSI // IEEE Access. 2022. Vol. 10. PP. 132931–132948. doi: 10.1109/access.2022.3230650. EDN:EIBYDD
  16. Saleh A.A.M. Frequency-Independent and Frequency-Dependent Nonlinear Models of TWT Amplifiers // IEEE Transactions on Communications. 1981. Vol. 29. Iss. 11. PP. 1715–1720. doi: 10.1109/TCOM.1981.1094911
  17. Isaksson M., Wisell D., Ronnow D. A comparative analysis of behavioral models for RF power amplifiers // IEEE Transactions on Microwave Theory and Techniques. 2006. Vol. 54. Iss. 1. PP. 348–359. doi: 10.1109/TMTT.2005.860500
  18. Rönnow D. Software for determining the third order Volterra kernels of radio frequency power amplifiers. 2005. doi: 10.13140/2.1.4327.8724
  19. Синильников А.М., Фокин Г.А., Гришин И.В., Калинкина А.А. Анализ пропускной способности систем MIMO-NOMA // Электросвязь. 2024. № 10. С. 20–32. doi: 10.34832/ELSV.2024.59.10.004. EDN:DFCTXZ
  20. Синильников А.М., Фокин Г.А., Гришин И.В., Калинкина А.А. Анализ технологии неортогонального множественного доступа с разделением по мощности PD-NOMA // Вестник СибГУТИ. 2024. Т. 18. №. 4. С. 3–21. doi: 10.55648/1998-6920-2024-18-4-3-21. EDN:HOVCSL
  21. Jain R., Chiu D.-M., Hawe W.R. A Quantitative Measure of Fairness and Discrimination for Resource Allocation in Shared Computer Systems. DEC Research Report TR-301. 1984.
  22. Rec. ITU-R M.2412-0 (10/2017). Guidelines for evaluation of radio interface technologies for IMT 2020.
  23. Kyösti P., Meinilä J., Hentilä L., Holma P., Käske M., Narandžić M., et al. WINNER II Channel Models for System Level Simulations. Final Report on Model Specification. Version 1.2. 2008. URL: http://signserv.signal.uu.se/Publications/WINNER/WIN2D112.pdf
  24. Holma P., Meinilä J., Kyösti P., Hentilä L., Jämsä T., Suikkanen E., et al. CP5-026 WINNER+ D5.3 v1.0 WINNER+ Final Channel Models. 2010.
  25. Chi Y., Liu L., Song G., Yuen C., Guan Y.L., Li Y. Practical MIMO-NOMA: Low Complexity & Capacity-Approaching Solution // arXiv preprint. 2018. doi: 10.48550/arXiv.1807.06846
  26. de Sena A.S., Nardelli P.H.J., da Costa D.B., Lima F.R.M., Yang L., Popovski P., Ding Z., Papadias C.B. IRS-Assisted Massive MIMO-NOMA Networks with Polarization Diversity // arXiv preprint. 2021. doi: 10.48550/arXiv.2105.12952

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».