Signature Analysis Mathematical Model of Network Traffic and Experimental Evaluation of Its Functioning Efficiency
- Authors: Branitskiy A.A.1, Branitskaya N.A.2
-
Affiliations:
- The Bonch-Bruevich Saint Petersburg State University of Telecommunications
- The Saint Petersburg State University
- Issue: Vol 11, No 4 (2025)
- Pages: 107-117
- Section: INFORMATION TECHNOLOGIES AND TELECOMMUNICATION
- URL: https://journal-vniispk.ru/1813-324X/article/view/309038
- EDN: https://elibrary.ru/OELOOW
- ID: 309038
Cite item
Full Text
Abstract
About the authors
A. A. Branitskiy
The Bonch-Bruevich Saint Petersburg State University of Telecommunications
Email: branickii1.aa@sut.ru
N. A. Branitskaya
The Saint Petersburg State University
Email: nataliya_petrova@mail.ru
References
- Kumar S., Spafford E.H. A Pattern Matching Model for Misuse Intrusion Detection // Proceedings of the 17th National Computer Security Conference (NIST, Baltimore, USA, 11–14 October 1994). 1994. Vol. 1. PP. 11–21.
- Браницкий А.А. Программные способы повышения эффективности функционирования сетевых сигнатурных систем обнаружения атак // VII Международная научно-техническая и научно-методическая конференция «Актуальные проблемы инфотелекоммуникаций в науке и образовании» (АПИНО, Санкт-Петербург, Российская Федерация, 28 февраля – 01 марта 2018 г.). СПб.: СПбГУТ, 2018. Т. 1. С. 118–123. EDN:XSUFGX
- Gowrison G., Ramar K., Muneeswaran K., Revathi T. Efficient context-free grammar intrusion detection system // International Journal of Innovative Computing Information and Control. 2011. Vol. 7. Iss. 8. PP. 4779–4788.
- Kazachkin D.S., Gamayunov D.Y. Network traffic analysis optimization for signature-based intrusion detection systems // Proceedings of the Spring/Summer Young Researchers’ Colloquium on Software Engineering. 2008. Iss. 2. doi: 10.15514/SYRCOSE-2008-2-5
- Kruegel C., Toth T. Using Decision Trees to Improve Signature-Based Intrusion Detection // Proceedings of the 6th International Symposium on Recent Advances in Intrusion Detection (RAID 2003, Pittsburgh, USA, 8–10 September 2003). Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2003. Vol. 2820. PP. 173–191. doi: 10.1007/978-3-540-45248-5_10
- Ilgun K., Kemmerer R.A., Porras P.A. State transition analysis: A rule-based intrusion detection approach // IEEE Transactions on Software Engineering. 1995. Vol. 21. Iss. 3. PP. 181–199. doi: 10.1109/32.372146
- Kumar S., Spafford E.H. A Software Architecture to Support Misuse Intrusion Detection // Proceedings of the 18th National Information Security Conference (NIST, Baltimore, USA, 10–13 October 1995). 1995. Vol. 1. PP. 194–204.
- Zhang X., Wu T., Zheng Q., Zhai L., Hu H., Yin W., et al. Multi-Step Attack Detection Based on Pre-Trained Hidden Markov Models // Sensors. 2022. Vol. 22. Iss. 8. P. 2874. doi: 10.3390/s22082874
- Lunt T.F., Tamaru A., Gillham F. A Real-Time Intrusion Detection Expert System (IDES). Final Technical Report for SRI Project 6784. 1992.
- Lindqvist U., Porras P.A. eXpert-BSM: A host-based intrusion detection solution for Sun Solaris // Seventeenth Annual Computer Security Applications Conference (New Orleans, USA, 10–14 December 2001). IEEE, 2001. PP. 240–251. doi: 10.1109/ACSAC.2001.991540
- Lindqvist U., Porras P.A. Detecting computer and network misuse through the production-based expert system toolset (P-BEST) // Proceedings of the 1999 IEEE Symposium on Security and Privacy (Oakland, USA, 14–14 May 1999). IEEE, 1999. PP. 146–161. doi: 10.1109/SECPRI.1999.766911
- Kim H.J., Choi J. Recommendations for Responding to System Security Incidents Using Knowledge Graph Embedding // Electronics. 2023. Vol. 13. Iss. 1. P. 171. doi: 10.3390/electronics13010171
- Wang Y., Jere S., Banerjee S., Liu L., Shetty S., Dayekh S. Anonymous Jamming Detection in 5G with Bayesian Network Model Based Inference Analysis // Proceedings of the 23rd International Conference on High Performance Switching and Routing (HPSR, Taicang, China, 06–08 June 2022). IEEE, 2022. PP. 151–156. doi: 10.1109/HPSR54439.2022.9831286
- Almseidin M., Al-Sawwa J., Alkasassbeh M., Alweshah M. On detecting distributed denial of service attacks using fuzzy inference system // Cluster Computing. 2023. Vol. 26. Iss. 2. PP. 1337–1351. doi: 10.1007/s10586-022-03657-5
- Braden R., Borman D., Partridge C. RFC 1071: Computing the Internet Checksum. 1988. URL: https://dl.acm.org/doi/pdf/10.17487/RFC1071 (Accessed 22.08.2025)
- Fall K.R., Stevens W.R. TCP/IP illustrated. Addison-Wesley Professional, 2012. Vol. 1. 1008 p.
- Laraba A., François J., Chrisment I., Chowdhury S.R., Boutaba R. Detecting Multi-Step Attacks: A Modular Approach for Programmable Data Plane // NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium (Budapest, Hungary, 25–29 April 2022). IEEE Press, 2022. PP. 1–9. doi: 10.1109/NOMS54207.2022.978993
- Madhloom J.K., Noori Z.H., Ebis S.K., Hassen O.A., Darwish S.M. An Information Security Engineering Framework for Modeling Packet Filtering Firewall Using Neutrosophic Petri Nets // Computers. 2023. Vol. 12. Iss. 10. P. 202. doi: 10.3390/comput-ers12100202
- Браницкий А.А. Алгоритмы параллельного поиска шаблонных подстрок при реализации сигнатурных правил СОА // Региональная информатика и информационная безопасность: сборник трудов конференции (Санкт-Петербург, Российская Федерация, 01–03 ноября 2017 г.). СПб.: Санкт-Петербургское Общество информатики, вычислительной техники, систем связи и управления, 2017. Т. 4. C. 210–212. EDN:XTONUL
- Thota K.K., Raj R.J.R. Efficient Regular Expression Matching and Hardware-Accelerated Finite Automata Pattern Recognition in NIDS // Proceedings of the 6th International Conference on Recent Trends in Advance Computing (ICRTAC, Chennai, India, 14–15 December 2023). IEEE, 2023. PP. 349–353. doi: 10.1109/ICRTAC59277.2023.10480760
- Браницкий А.А. Обнаружение аномальных сетевых соединений на основе гибридизации методов вычислительного интеллекта. Дис. … канд. тех. наук. СПб.: Санкт-Петербургский Федеральный исследовательский центр РАН, 2018. 305 с. EDN:OQGUHC
- Febrita R.E., Hakim L., Utomo A.P. The Implementation of Machine Learning for Optimizing Network-Based Intrusion Detection in the Snort Application // Proceedings of the 6th International Seminar on Research of Information Technology and Intelligent Systems (ISRITI, Batam, Indonesia, 11–12 December 2023). 2023. PP. 141–147. doi: 10.1109/ISRITI60336.2023.10467566
- Makanju A., LaRoche P., Zincir-Heywood A.N. A Comparison Between Signature and Machine Learning Based Detectors. URL: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=16e92def7fca8e41894e875f2eb9d4118a4d09df (Accessed 22.08.2025)
Supplementary files
