Breast cancer: genetic personal risk factors: A review

Cover Page

Cite item

Full Text

Abstract

Determination of cancer risk factors allow us to develop diagnostics tests that improved identification and reduced the rate of mortality of most frequent cancer diseases including breast cancer, prostate cancer, gastrointestinal tumors. Today individual risk of breast cancer considers personal genetics, medical history of patient, lifestyle, and a number of additional factors. Calculation of the first mathematical models for breast cancer risk assessment included anthropometric data, hormonal status, and family history of cancer. The discovery of BRCA1 and BRCA2 genes’ role in the development of breast cancer and the accumulation of data from population studies contributed to the introduction of the genetic component into mathematical models. The trend of the last decade is the integration of the polygenic component into the scheme for calculating the individual risk of breast cancer. In this review, we have analyzed existing models, assessed their relevance for certain groups of patients, studied the trends in the development of methods for molecular genetic diagnosis of breast cancer and determining the personal risk of developing the disease.

About the authors

Maria A. Zolotykh

Kazan (Volga Region) Federal University

Email: maria.a.zolotykh@gmail.com
ORCID iD: 0000-0003-2473-5514
SPIN-code: 2591-7350
Scopus Author ID: 57445870200
ResearcherId: A-9296-2019

Res. Assist.

Russian Federation, 420008, Kazan, 18 Kremlyovskaya street

Airat I. Bilyalov

Kazan (Volga Region) Federal University; The Loginov Moscow Clinical Scientific Center

Email: bilyalovair@yandex.ru
ORCID iD: 0000-0002-8888-8395
SPIN-code: 6474-9570
Scopus Author ID: 57202729025
ResearcherId: Y-8630-2018

Lecturer, oncologist

Russian Federation, 420008, Kazan, 18 Kremlyovskaya street; Moscow

Alfiya I. Nesterova

Kazan (Volga Region) Federal University; Republican Clinical Oncology Dispensary named after Prof. M.Z. Sigal

Email: AlfIKhasanova@kpfu.ru
SPIN-code: 5369-0797
ResearcherId: AAE-6968-2019

head Department of Chemotherapy, Scientific and Clinical Center for Precision and Regenerative Medicine, Institute of Fundamental Medicine and Biology, hands Department of Translational Oncology and Telemedicine Technologies

Russian Federation, 420008, Kazan, 18 Kremlyovskaya street; Kazan

Albert M. Gimranov

Republican Clinical Oncology Dispensary named after Prof. M.Z. Sigal

Email: gimrash@gmail.com

head department of mammology and plastic surgery №4

Russian Federation, Kazan

Julia V. Filina

Kazan (Volga Region) Federal University

Email: julia.v.filina@gmail.com
ORCID iD: 0000-0002-1853-8365
SPIN-code: 5961-6298
Scopus Author ID: 54893770000
ResearcherId: F-9008-2017

Res. Office

Russian Federation, 420008, Kazan, 18 Kremlyovskaya street

Albert A. Rizvanov

Kazan (Volga Region) Federal University

Email: rizvanov@gmail.com
ORCID iD: 0000-0002-9427-5739
SPIN-code: 7031-5996
Scopus Author ID: 6507161167
ResearcherId: H-4486-2013

D. Sci. (Biol.), Prof.

Russian Federation, 420008, Kazan, 18 Kremlyovskaya street

Regina R. Miftakhova

Kazan (Volga Region) Federal University

Author for correspondence.
Email: regina.miftakhova@gmail.com
ORCID iD: 0000-0002-6686-1968
SPIN-code: 7078-9370
Scopus Author ID: 36169970800
ResearcherId: AAK-9191-2021

Ph.D.

Russian Federation, 420008, Kazan, 18 Kremlyovskaya street

References

  1. Cancer IAfRo: Estimated crude incidence rates in 2020, Europen Federation, females, all ages. Available at: https://gco.iarc.fr (2020). Accessed: 23.08.2021.
  2. Ramin C, Withrow DR, Davis Lynn BC, et al. A. Risk of contralateral breast cancer according to first breast cancer characteristics among women in the USA, 1992–2016. Breast Cancer Res. 2021;23(1):1-10.
  3. Li T, Sun L, Miller N, Nicklee T, et al. The association of measured breast tissue characteristics with mammographic density and other risk factors for breast cancer. Cancer Epidemiol Biomarkers Prev. 2005;14(2):343-9.
  4. García-Estévez L, Cortés J, Pérez S, et al. Obesity and breast cancer: a paradoxical and controversial relationship influenced by menopausal status. Front Oncol. 2021;11:705911.
  5. Tybjerg AJ, Friis S, Brown K, et al. Updated fraction of cancer attributable to lifestyle and environmental factors in Denmark in 2018. Sci Rep. 2022;12(1):1-11.
  6. French JD, Edwards SL. Genetic determinants of breast cancer risk. Curr Opin Endocr Metab Res. 2020;15:1-7.
  7. Leedom TP, LaDuca H, McFarland R, et al. Breast cancer risk is similar for CHEK2 founder and non-founder mutation carriers. Cancer Genet. 2016;209(9):403-7.
  8. Rumgay H, Murphy N, Ferrari P, et al. Alcohol and cancer: epidemiology and biological mechanisms. Nutrients. 2021;13(9):3173.
  9. Jones ME, Schoemaker MJ, Wright LB, et al. Smoking and risk of breast cancer in the Generations Study cohort. Breast Cancer Res. 2017;19:1-14.
  10. Gibson TM, Karyadi DM, Kapoor V, et al. Joint effects of general population polygenic risk scores (PRS) and radiation treatment on subsequent neoplasm risk among childhood cancer survivors: A report from the Childhood Cancer Survivor Study (CCSS). Am Soc Clin Oncol. 2022.
  11. Токмаков В.В., Ульянова Е.П., Шатова Ю.С., и др. Экспрессия E-и N-кадгеринов в опухоли при люминальном первично-операбельном раке молочной железы без гиперэкспрессии Her2/neu у женщин в постменопаузе как прогностический фактор. Research'n Practical Medicine Journal. 2020;7(4):10-8 [Tokmakov VV, Ulianova EP, Shatova YuS, et al. Expression of E- and N-cadherins in tumor in luminal, primary operable breast cancer without Her2/neu overexpression in postmenopausal women as a prognostic factor. Research and Practical Medicine Journal. 2020;7(4):10-8 (in Russian)].
  12. Marchbanks PA, Curtis KM, Mandel MG, et al. Oral contraceptive formulation and risk of breast cancer. Contraception. 2012;85(4):342-50.
  13. Mørch LS, Skovlund CW, Hannaford PC, et al. Contemporary hormonal contraception and the risk of breast cancer. New Engl J Med. 2017;377(23):2228-39.
  14. Wendt C, Margolin S. Identifying breast cancer susceptibility genes–a review of the genetic background in familial breast cancer. Acta Oncologica. 2019;58(2):135-46.
  15. Oncology ASoC: Hereditary Breast and Ovarian Cancer. Available at: https://www.cancer.net/(2022). Accessed: 15.11.2022.
  16. Maxwell KN, Wenz BM, Kulkarni A, et al. Mutation rates in cancer susceptibility genes in patients with breast cancer with multiple primary cancers. JCO Precis Oncol. 2020;4:916-25.
  17. Preobrazhenskaya EV, Shleykina AU, Gorustovich OA, et al. Frequency and molecular characteristics of PALB2-associated cancers in Russian patients. Int J Cancer. 2021;148(1):203-10.
  18. Kuchenbaecker KB, Hopper JL, Barnes DR, et al. Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. JAMA. 2017;317(23):2402-16.
  19. Franceschini G, Di Leone A, Terribile D, et al. Bilateral prophylactic mastectomy in BRCA mutation carriers: what surgeons need to know. Ann Ital Chir. 2019;90:1-2.
  20. Schon K, Tischkowitz M. Clinical implications of germline mutations in breast cancer: TP53. Breast Cancer Res Treat. 2018;167(2):417-23.
  21. Grill S, Ramser J, Hellebrand H, et al. TP53 germline mutations in the context of families with hereditary breast and ovarian cancer: a clinical challenge. Arch Gynecol Obstet. 2021;303(6):1557-67.
  22. Ngeow J, Sesock K, Eng C. Breast cancer risk and clinical implications for germline PTEN mutation carriers. Breast Cancer Res Treat. 2017;165(1):1-8.
  23. Dossus L, Benusiglio PR. Lobular breast cancer: incidence and genetic and non-genetic risk factors. Breast Cancer Res. 2015;17(1):1-8.
  24. Hansford S, Kaurah P, Li-Chang H, et al. Hereditary diffuse gastric cancer syndrome: CDH1 mutations and beyond. JAMA Oncol. 2015;1(1):23-32.
  25. Lipsa A, Kowtal P, Sarin R. Novel germline STK11 variants and breast cancer phenotype identified in an Indian cohort of Peutz–Jeghers syndrome. Human Mol Genet. 2019;28(11):1885-93.
  26. Tan MH, Mester JL, Ngeow J, et al. Lifetime cancer risks in individuals with germline PTEN mutations. Clin Cancer Res. 2012;18(2):400-7.
  27. Rahman N, Seal S, Thompson D, et al. PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nature Genet. 2007;39(2):165-7.
  28. Shiovitz S, Korde LA. Genetics of breast cancer: a topic in evolution. Ann Oncol. 2015;26(7):1291-9.
  29. Rafnar T, Gudbjartsson DF, Sulem P, et al. Mutations in BRIP1 confer high risk of ovarian cancer. Nature Genet. 2011;43(11):1104-7.
  30. Graffeo R, Rana H, Conforti F, et al. Moderate penetrance genes complicate genetic testing for breast cancer diagnosis: ATM, CHEK2, BARD1 and RAD51D. Breast. 2022;65:32-40.
  31. Song H, Dicks SJR, Tyrer JP, et al. Contribution of germline mutations in the RAD51B, RAD51C, and RAD51D genes to ovarian cancer in the population. J Clin Oncol. 2015;33(26):2901.
  32. Bian L, Meng Y, Zhang M, et al. MRE11-RAD50-NBS1 complex alterations and DNA damage response: implications for cancer treatment. Mol Cancer. 2019;18(1):1-14.
  33. Crook A, Kwa R, Ephraums S, et al. The psychological impact and experience of breast cancer screening in young women with an increased risk of breast cancer due to neurofibromatosis type 1. Fam Cancer. 2022;21(2):241-53.
  34. Wood ME, McKinnon W, Garber J. Risk for breast cancer and management of unaffected individuals with non -BRCA hereditary breast cancer. Breast J. 2020;26(8):1528-34.
  35. Adank M, van Mil S, Gille J, et al. PALB2 analysis in BRCA2-like families. Breast Cancer Res Treat. 2011;127(2):357-62.
  36. Desrichard A, Bidet Y, Uhrhammer N, et al. CHEK2 contribution to hereditary breast cancer in non-BRCA families. Breast Cancer Res. 2011;13(6):1-11.
  37. Meijers-Heijboer H, Van den Ouweland A, Klijn J, et al. Low-penetrance susceptibility to breast cancer due to CHEK2* 1100delC in noncarriers of BRCA1 or BRCA2 mutations. Nature Genet. 2002;31(1).
  38. Ansari N, Shahrabi S, Khosravi A, et al. Prognostic significance of CHEK2 mutation in progression of breast cancer. Lab Med. 2019;50(3):e36-e41.
  39. Schmidt MK, Hogervorst F, Van Hien R, et al. Age-and tumor subtype–specific breast cancer risk estimates for CHEK2* 1100delC carriers. J Clin Oncol. 2016;34(23):2750.
  40. Zhang S, Phelan CM, Zhang P, et al. Frequency of the CHEK2 1100delC mutation among women with breast cancer: an international study. Cancer Res. 2008;68(7):2154-7.
  41. Apostolou P, Fostira F. Hereditary breast cancer: the era of new susceptibility genes. BioMed Res Int. 2013;2013.
  42. Kote-Jarai Z, Jugurnauth S, Mulholland S, et al. A recurrent truncating germline mutation in the BRIP1/FANCJ gene and susceptibility to prostate cancer. Br J Cancer. 2009;100(2):426-30.
  43. Chen S, Parmigiani G. Meta-analysis of BRCA1 and BRCA2 penetrance. J Clin Oncol. 2007;25(11):1329.
  44. Engel C, Fischer C. Breast cancer risks and risk prediction models. Breast care (Basel, Switzerland). 2015;10(1):7-12. doi: 10.1159/000376600
  45. Mavaddat N, Peock S, Frost D, et al. Cancer risks for BRCA1 and BRCA2 mutation carriers: results from prospective analysis of EMBRACE. J J Natl Cancer Inst. 2013;105(11):812-22.
  46. Gail MH, Brinton LA, Byar DP, et al. Projecting individualized probabilities of developing breast cancer for white females who are being examined annually. J Natl Cancer Inst. 1989;81(24):1879-86.
  47. Antoniou AC, Pharoah P, Smith P, et al. The BOADICEA model of genetic susceptibility to breast and ovarian cancer. Br J Cancer. 2004;91(8):1580-90.
  48. Coopey SB, Hughes KS. Breast Cancer Risk Prediction in Women with Atypical Breast Lesions. Atypical Breast Proliferative Lesions and Benign Breast Disease. Springer; 2018; p. 103-13.
  49. Liu L, Hao X, Song Z. Correlation between family history and characteristics of breast cancer. Scientific Rep. 2021;11(1):1-12.
  50. Cao Y, Willett WC, Rimm EB, et al. Light to moderate intake of alcohol, drinking patterns, and risk of cancer: results from two prospective US cohort studies. BMJ. 2015;351.
  51. Newcomb PA, Trentham-Dietz A, Hampton JM, et al. Late age at first full term birth is strongly associated with lobular breast cancer. Cancer. 2011;117(9):1946-56.
  52. Lei S, Zheng R, Zhang S, et al. Global patterns of breast cancer incidence and mortality: A population -based cancer registry data analysis from 2000 to 2020. Cancer Commun. 2021;41(11):1183-94.
  53. McCormack VA, dos Santos Silva I. Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev. 2006;15(6):1159-69.
  54. Roberts ME, Jackson SA, Susswein LR, et al. MSH6 and PMS2 germ-line pathogenic variants implicated in Lynch syndrome are associated with breast cancer. Genet Med. 2018;20(10):1167-74.
  55. Jensen UB, Sunde L, Timshel S, et al. Mismatch repair defective breast cancer in the hereditary nonpolyposis colorectal cancer syndrome. Breast Cancer Res Treat. 2010;120(3):777-82.
  56. Han Y-J, Zhang J, Zheng Y, et al. Genetic and epigenetic regulation of TOX3 expression in breast cancer. PloS One. 2016;11(11):e0165559.
  57. Jara L, Gonzalez-Hormazabal P, Cerceno K, et al. Genetic variants in FGFR2 and MAP3K1 are associated with the risk of familial and early-onset breast cancer in a South-American population. Breast Cancer Res Treat. 2013;137(2):559-69.
  58. MacPherson G, Healey CS, Teare MD, et al. Association of a common variant of the CASP8 gene with reduced risk of breast cancer. J Natl Cancer Inst. 2004;96(24):1866-9.
  59. Huszno J, Grzybowska E. TP53 mutations and SNPs as prognostic and predictive factors in patients with breast cancer. Oncol Lett. 2018;16(1):34-40.
  60. Mavaddat N, Michailidou K, Dennis J, et al. Polygenic risk scores for prediction of breast cancer and breast cancer subtypes. Am J Human Genet. 2019;104(1):21-34.
  61. Katsonis P, Koire A, Wilson SJ, et al. Single nucleotide variations: biological impact and theoretical interpretation. Protein Sci. 2014;23(12):1650-66.
  62. Isakoff SJ, Mayer EL, He L, et al. TBCRC009: a multicenter phase II clinical trial of platinum monotherapy with biomarker assessment in metastatic triple-negative breast cancer. J Clin Oncol. 2015;33(17):1902.
  63. Johnson N, Fletcher O, Palles C, et al. Counting potentially functional variants in BRCA1, BRCA2 and ATM predicts breast cancer susceptibility. Human Mol Genet. 2007;16(9):1051-7.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1.

Download (173KB)
3. Fig.2.

Download (381KB)

Copyright (c) 2023 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».