The NETosis phenomena as a functional features of peripheral blood neutrophils and its role in the pathogenesis of infections and oncological diseases: A review
- Authors: Glukhareva A.E.1, Afonin G.V.1, Melnikova A.A.1, Grivtsova L.Y.1, Kolobaev I.V.1, Ivanov S.A.1, Kaprin A.D.2,3
-
Affiliations:
- Tsyb Medical Radiological Research Centre – branch of the National Medical Research Radiological Center
- National Medical Research Radiological Center
- People’s Friendship University of Russia (RUDN University)
- Issue: Vol 24, No 4 (2022)
- Pages: 487-493
- Section: CLINICAL ONCOLOGY
- URL: https://journal-vniispk.ru/1815-1434/article/view/132983
- DOI: https://doi.org/10.26442/18151434.2022.4.201786
- ID: 132983
Cite item
Full Text
Abstract
The review is devoted to the analysis of the mechanism of NETosis and the formation of extracellular traps by neutrophils. Neutrophil traps are DNA strands, histones and proteins that are involved in autoimmune diseases, COVID-19, as well as in the pathogenesis of other non-communicable diseases. Based on the literature data, the role of NETosis in the development oncological diseases is analyzed. Two types of neutrophils have been characterized: low-density neutrophils and high-density neutrophils. In particular, the significance of this phenomenon in the progression and metastasis of the cancer. A detailed study of this issue will be useful both from a fundamental standpoint regarding the disclosure of the mechanisms of the metastatic cascade, and from a practical point of view for the development of new immunotherapeutic approaches in the treatment of metastatic tumors.
Full Text
##article.viewOnOriginalSite##About the authors
Anastasia E. Glukhareva
Tsyb Medical Radiological Research Centre – branch of the National Medical Research Radiological Center
Author for correspondence.
Email: gluharevaa78@gmail.com
ORCID iD: 0000-0002-4122-1569
SPIN-code: 6093-0578
Scopus Author ID: 1069449
Clinical Resident
Russian Federation, ObninskGrigory V. Afonin
Tsyb Medical Radiological Research Centre – branch of the National Medical Research Radiological Center
Email: Dr.G.Afonin@mail.ru
ORCID iD: 0000-0002-7128-2397
SPIN-code: 9039-6110
Scopus Author ID: 896307
ResearcherId: О-3150-2017
Cand. Sci. (Med.)
Russian Federation, ObninskAngelika A. Melnikova
Tsyb Medical Radiological Research Centre – branch of the National Medical Research Radiological Center
Email: angelik_melnikova@mail.ru
ORCID iD: 0000-0001-7229-2813
SPIN-code: 4197-1929
Scopus Author ID: 1118349
Res. Officer
Russian Federation, ObninskLyudmila Yu. Grivtsova
Tsyb Medical Radiological Research Centre – branch of the National Medical Research Radiological Center
Email: grivtsova@mail.ru
ORCID iD: 0000-0001-9103-9688
SPIN-code: 4423-6844
Scopus Author ID: 583894
D. Sci. (Biol.)
Russian Federation, ObninskIlya V. Kolobaev
Tsyb Medical Radiological Research Centre – branch of the National Medical Research Radiological Center
Email: kolobaeviv@gmail.com
ORCID iD: 0000-0002-3573-6996
SPIN-code: 1382-5529
Scopus Author ID: 878091
Cand. Sci. (Med.)
Russian Federation, ObninskSergei A. Ivanov
Tsyb Medical Radiological Research Centre – branch of the National Medical Research Radiological Center
Email: gluharevaa78@gmail.com
ORCID iD: 0000-0001-7689-6032
SPIN-code: 4264-5167
Scopus Author ID: 16070399200
ResearcherId: N-8221-2017
D. Sci. (Med.), Prof. RAS
Russian Federation, ObninskAndrei D. Kaprin
National Medical Research Radiological Center; People’s Friendship University of Russia (RUDN University)
Email: gluharevaa78@gmail.com
ORCID iD: 0000-0001-8784-8415
SPIN-code: 1759-8101
Scopus Author ID: 96775
D. Sci. (Med.), Prof., Acad. RAS
Russian Federation, Obninsk; MoscowReferences
- Потапнев М.П., Гущина Л.М., Мороз Л.А. Фенотипическая и функциональная гетерогенность субпопуляций нейтрофилов в норме и при патологии. Иммунология. 2019;40(5):84-96 [Potapnev MP, Gushchina LM, Moroz LA. Phenotypic and functional heterogeneity of neutrophil subpopulations in normal and pathological conditions. Immunology. 2019;40(5):84-96 (in Russian)]. DOI:10.24411/ 0206-4952-2019-15009
- Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532-5. doi: 10.1126/science.1092385
- Fuchs TA, Abed U, Goosmann C, et al. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol. 2007;176(2):231-41. doi: 10.1083/jcb.200606027
- Палладина А.Д., Хомякова Н.Ф. Нетоз как механизм прогрессирования рака. Иммунология гемопоэза. 2019;17(2):39-52 [Palladina AD, Khomyakova NF. NETosis as a mechanism of cancer progression. Immunology of hematopoiesis. 2019;17(2):39-52 (in Russian)].
- Воробьева Н.В., Черняк Б.В. Нетоз: молекулярные механизмы, роль в физиологии и патологии. Биохимия. 2020;85(10):1383-97 [Vorobyova NV, Chernyak BV. NETosis: molecular mechanisms, role in physiology and pathology. Biochemistry. 2020;85(10):1383-97 (in Russian)]. doi: 10.31857/S0320972520100061
- Steinberg SF. Mechanisms for redox-regulation of protein kinase C. Front Pharmacol. 2015;6:128. DOI:10.3389/ fphar.2015.00128
- Vorobjeva N, Prikhodko A, Galkin I, et al. Mitochondrial reactive oxygen species are involved in chemoattractant-induced oxidative burst and degranula-tion of human neutrophils in vitro. Eur J Cell Biol. 2017;96(3):254-65. doi: 10.1016/j.ejcb.2017.03.003
- Douda DN, Khan MA, Grasemann H, et al. SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx. Proc Natl Acad Sci U S A. 2015;112(9):2817-22. doi: 10.1073/pnas.1414055112
- Ravindran M, Khan MA, Palaniyar N. Neutrophil Extracellular Trap Formation: Physiology, Pathology, and Pharmacology. Biomolecules. 2019;9(8):365. doi: 10.3390/biom9080365
- Vorobjeva N, Galkin I, Pletjushkina O, et al. Mitochondrial permeability transition pore is involved in oxidative burst and NETosis of human neutrophils. Biochim Biophys Acta Mol Basis Dis. 2020;1866(5):165664. doi: 10.1016/j.bbadis.2020.165664
- Metzler KD, Goosmann C, Lubojemska A, et al. A myeloperoxidase-containing complex regulates neutrophil elastase release and actin dynamics during NETosis. Cell. Rep. 2014;8(3):883-96. doi: 10.1016/j.celrep.2014.06.044
- Chen KW, Monteleone M, Boucher D, et al. Noncanonical inflammasome signaling elicits gasdermin D-dependent neutrophil extracellular traps. Sci Immunol. 2018;3(26):eaar6676. doi: 10.1126/sciimmunol.aar6676
- D’Cruz AA, Speir M, Bliss-Moreau M, et al. The pseudokinase MLKL activates PAD4-dependent NET formation in necroptotic neutrophils. Sci Signal. 2018;11(546):eaao1716. doi: 10.1126/scisignal.aao1716
- Rada B, Leto TL. Oxidative innate immune defenses by Nox/Duox family NADPH oxidases. Contrib Microbiol. 2008;15:164-87. doi: 10.1159/000136357
- Li P, Li M, Lindberg MR, et al. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J Exp Med. 2010;207(9):1853-62. doi: 10.1084/jem.20100239
- Demers M, Krause DS, Schatzberg D, et al. Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proc Natl Acad Sci U S A. 2012;109(32):13076-81. doi: 10.1073/pnas.1200419109
- Yaqinuddin A, Kashir J. Novel therapeutic targets for SARS-CoV-2-induced acute lung injury: Targeting a potential IL-1β/neutrophil extracellular traps feedback loop. Med Hypotheses. 2020;143:109906. doi: 10.1016/j.mehy.2020.109906
- Schönrich G, Raftery MJ, Samstag Y. Devilishly radical NETwork in COVID-19: Oxidative stress, neutrophil extracellular traps (NETs), and T cell suppression. AdvBiolRegul. 2020;77:100741. doi: 10.1016/j.jbior.2020.100741
- Abakumova TV, Gening TP, Dolgova DR, et al. Influence of the levels of the pro-inflammatory cytokines on the formation of extracellular neutrophilic traps in disseminated ovarian cancer. Russian Journal of Immunology. 2019;22(2-2):704-6. doi: 10.31857/S102872210006765-6
- Barnes BJ, Adrover JM, Baxter-Stoltzfus A, et al. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J Exp Med. 2020;217(6):e20200652. doi: 10.1084/jem.20200652
- Jin X, Zhao Y, Zhang F, et al. Neutrophil extracellular traps involvement in corneal fungal infection. Mol Vis. 2016;22:944-52.
- Hwang JW, Kim JH, Kim HJ, et al. Neutrophil extracellular traps in nasal secretions of patients with stable and exacerbated chronic rhinosinusitis and their contribution to induce chemokine secretion and strengthen the epithelial barrier. ClinExpAllergy. 2019;49(10):1306-20. doi: 10.1111/cea.13448
- Sollberger G, Tilley DO, Zychlinsky A. Neutrophil Extracellular Traps: The Biology of Chromatin Externalization. Dev Cell. 2018;44(5):542-53. doi: 10.1016/j.devcel.2018.01.01
- Twaddell SH, Baines KJ, Grainge C, et al. The Emerging Role of Neutrophil Extracellular Traps in Respiratory Disease. Chest. 2019;156(4):774-82. doi: 10.1016/j.chest.2019.06.012.8
- Dicker AJ, Crichton ML, Pumphrey EG, et al. Neutrophil extracellular traps are associated with disease severity and microbiota diversity in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2018;141(1):117-27. doi: 10.1016/j.jaci.2017.04.022
- Uddin M, Watz H, Malmgren A, Pedersen F. NETopathic Inflammation in Chronic Obstructive Pulmonary Disease and Severe Asthma. Front Immunol. 2019;10:47. doi: 10.3389/fimmu.2019.00047
- Chen L, Zhao Y, Lai D, et al. Neutrophil extracellular traps promote macrophage pyroptosis in sepsis. Cell Death Dis. 2018;9(6):597. doi: 10.1038/s41419-018-0538-5
- Ivanov I, Shakhawat R, Sun M, et al. Nucleic acids as cofactors for factor XI and prekallikreinactivation: Different roles for high-molecular-weight kininogen. Thromb Haemost. 2017;117(4):671-81. doi: 10.1160/TH16-09-0691
- Noubouossie D, Whelihan M, Yu YB, et al. In vitro activation of coagulation by human neutrophil DNA and histone proteins but not neutrophil extracellular traps. Blood. 2017;129(8):1021-9. doi: 10.1182/blood-2016-06-722298
- Okeke EB, Louttit C, Fry C, et al. Inhibition of neutrophil elastase prevents neutrophil extracellular trap formation and rescues mice from endotoxic shock. Biomaterials. 2020;238:119836. doi: 10.1016/j.biomaterials.2020.119836
- Novotny J, Oberdieck P, Titova A, et al. Thrombus NET content is associated with clinical outcome in stroke and myocardial infarction. Neurology. 2020;94(22):e2346-60. doi: 10.1212/WNL.0000000000009532
- Айтбаев К.А., Муркамилов И.Т., Фомин В.В., и др. Коронавирусная болезнь 2019 (COVID-19): нетоз-ассоциированные механизмы прогрессирования и перспективы терапии, регулирующей образование нейтрофильныхвнеклекточных ловушек (NETs). Actabiomedicascientifica. 2021;6(4):64-73 [Aitbayev KA, Murkamilov IT, Fomin VV, et al. Coronavirus disease 2019 (COVID-19): not a toz- not a pelvis regulating the formation of neutrophilic entrapment traps (nets). Actabiomedicascientifica. 2021;6(4):64-73 (in Russian)]. doi: 10.29413/ABS.2021-6.4.6
- Grieshaber-Bouyer R, Nigrovic PA. Neutrophil Heterogeneity as Therapeutic Opportunity in Immune-Mediated Disease. Front Immunol. 2019;10:346. doi: 10.3389/fimmu.2019.00346
- Chatfield SM, Thieblemont N, Witko-Sarsat V. Expanding Neutrophil Horizons: New Concepts in Inflammation. J Innate Immun. 2018;10(5-6):422-31. doi: 10.1159/000493101
- Fousert E, Toes R, Desai J. Neutrophil Extracellular Traps (NETs) Take the Central Stage in Driving Autoimmune Responses. Cells. 2020;9(4):915. doi: 10.3390/cells9040915
- Wolach O, Sellar RS, Martinod K, et al. Increased neutrophil extracellular trap formation promotes thrombosis in myeloproliferative neoplasms. Sci Transl Med. 2018;10(436):eaan8292. doi: 10.1126/scitranslmed.aan8292
- Cabrini M, Nahmod K, Geffner J. New insights into the mechanisms controlling neutrophil survival. Curr Opin Hematol. 2010;17(1):31-5. doi: 10.1097/MOH.0b013e3283333b29
- von Köckritz-Blickwede M, Nizet V. Innate immunity turned inside-out: antimicrobial defense by phagocyte extracellular traps. J Mol Med (Berl). 2009;87(8):775-83. doi: 10.1007/s00109-009-0481-0
- Yost CC, Cody MJ, Harris ES, et al. Impaired neutrophil extracellular trap (NET) formation: a novel innate immune deficiency of human neonates. Blood. 2009;113(25):6419-27. doi: 10.1182/blood-2008-07-171629
- Liew PX, Kubes P. The Neutrophil's Role During Health and Disease. Physiol Rev. 2019;99(2):1223-48. doi: 10.1152/physrev.00012.2018
- Xiong S, Dong L, Cheng L. Neutrophils in cancer carcinogenesis and metastasis. J Hematol Oncol. 2021;14(1):173. doi: 10.1186/s13045-021-01187-y
- Jaillon S, Ponzetta A, Di Mitri D, et al. Neutrophil diversity and plasticity in tumour progression and therapy. Nat Rev Cancer. 2020;20(9):485-503. doi: 10.1038/s41568-020-0281-y
- Sagiv JY, Michaeli J, Assi S, et al. Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer. Cell Rep. 2015;10(4):562-73. doi: 10.1016/j.celrep.2014.12.039
- Rocks N, Vanwinge C, Radermecker C, et al. Ozone-primed neutrophils promote early steps of tumour cell metastasis to lungs by enhancing their NET production. Thorax. 2019;74(8):768-79. doi: 10.1136/thoraxjnl-2018-211990
- Albrengues J, Shields MA, Ng D, et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science. 2018;361(6409):eaao4227. doi: 10.1126/science.aao4227
- Berger-Achituv S, Brinkmann V, Abed UA, et al. A proposed role for neutrophil extracellular traps in cancer immunoediting. Front Immunol. 2013;4:48. doi: 10.3389/fimmu.2013.00048
- Oklu R, Sheth RA, Wong KHK, et al. Neutrophil extracellular traps are increased in cancer patients but does not associate with venous thrombosis. Cardiovasc Diagn Ther. 2017;7(Suppl 3):S140-9. doi: 10.21037/cdt.2017.08.01
- Hsu BE, Tabariès S, Johnson RM, et al. Immature Low-Density Neutrophils Exhibit Metabolic Flexibility that Facilitates Breast Cancer Liver Metastasis. Cell Rep. 2019;27(13):3902-15.e6. doi: 10.1016/j.celrep.2019.05.091
- Grilz E, Mauracher LM, Posch F, et al. Citrullinated histone H3, a biomarker for neutrophil extracellular trap formation, predicts the risk of mortality in patients with cancer. Br J Haematol. 2019;186(2):311-20. doi: 10.1111/bjh.15906
- Park J, Wysocki RW, Amoozgar Z, et al. Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps. Sci Transl Med. 2016;8(361):361ra138. doi: 10.1126/scitranslmed.aag1711
- Vorobjeva NV, Pinegin BV. Neutrophil extracellular traps: mechanisms of formation and role in health and disease. Biochemistry (Mosc). 2014;9(12):1286-96. doi: 10.1134/S0006297914120025
- Lewis HD, Liddle J, Coote JE, et al. Inhibition of PAD4 activity is sufficient to disrupt mouse and human NET formation. Nat Chem Biol. 2015;11(3):189-91. doi: 10.1038/nchembio.1735
- Volkov DV, Tetz GV, Rubtsov YP, et al. Neutrophil Extracellular Traps (NETs): Opportunities for Targeted Therapy. Acta Naturae. 2021;13(3):15-23. doi: 10.32607/actanaturae.11503
- Гусев С.А., Басырева Л.Ю., Максимов Д.И., и др. Витамин D3 блокирует образование нейтрофильных внеклеточных ловушек в цельной крови. Молекулярные, мембранные и клеточные основы функционирования биосистем: Тезисы докладов международной научной конференции, Четырнадцатого съезда Белорусского общественного объединения фотобиологов и биофизиков, Минск, 17–19 июня 2020 года. Минск: Белорусский государственный университет, 2020; c. 114 [Gusev SA, Batyreva LYu, Maksimov DI, et al. Vitamin D3 blokiruet obrazovanie neitrofil'nykh vnekletochnykh lovushek v tsel'noi krovi. Molekuliarnye, membrannye i kletochnye osnovy funktsionirovaniia biosistem: Tezisy dokladov mezhdunarodnoi nauchnoi konferentsii, Chetyrnadtsatogo s"ezda Belorusskogo obshchestvennogo ob"edineniia fotobiologov i biofizikov, Minsk, 17–19 iiunia 2020 goda. Minsk: Belarusian State University, 2020; p. 114 (in Russian)].
- Пинегин Б.В., Дагиль Ю.А., Воробьева Н.В., и др. Влияние азоксимера бромида на формирование внеклеточных нейтрофильных ловушек. РМЖ. 2019;1:1-6 [Pinegin BV, Dogel YuA, Vorobyova NV, et al. The effect of azoximer bromide on the formation of extracellular neutrophil traps. Breast cancer. 2019;1:1-6 (in Russian)].
Supplementary files
