The NETosis phenomena as a functional features of peripheral blood neutrophils and its role in the pathogenesis of infections and oncological diseases: A review

Cover Page

Cite item

Full Text

Abstract

The review is devoted to the analysis of the mechanism of NETosis and the formation of extracellular traps by neutrophils. Neutrophil traps are DNA strands, histones and proteins that are involved in autoimmune diseases, COVID-19, as well as in the pathogenesis of other non-communicable diseases. Based on the literature data, the role of NETosis in the development oncological diseases is analyzed. Two types of neutrophils have been characterized: low-density neutrophils and high-density neutrophils. In particular, the significance of this phenomenon in the progression and metastasis of the cancer. A detailed study of this issue will be useful both from a fundamental standpoint regarding the disclosure of the mechanisms of the metastatic cascade, and from a practical point of view for the development of new immunotherapeutic approaches in the treatment of metastatic tumors.

About the authors

Anastasia E. Glukhareva

Tsyb Medical Radiological Research Centre – branch of the National Medical Research Radiological Center

Author for correspondence.
Email: gluharevaa78@gmail.com
ORCID iD: 0000-0002-4122-1569
SPIN-code: 6093-0578
Scopus Author ID: 1069449

Clinical Resident

Russian Federation, Obninsk

Grigory V. Afonin

Tsyb Medical Radiological Research Centre – branch of the National Medical Research Radiological Center

Email: Dr.G.Afonin@mail.ru
ORCID iD: 0000-0002-7128-2397
SPIN-code: 9039-6110
Scopus Author ID: 896307
ResearcherId: О-3150-2017

Cand. Sci. (Med.)

Russian Federation, Obninsk

Angelika A. Melnikova

Tsyb Medical Radiological Research Centre – branch of the National Medical Research Radiological Center

Email: angelik_melnikova@mail.ru
ORCID iD: 0000-0001-7229-2813
SPIN-code: 4197-1929
Scopus Author ID: 1118349

Res. Officer

Russian Federation, Obninsk

Lyudmila Yu. Grivtsova

Tsyb Medical Radiological Research Centre – branch of the National Medical Research Radiological Center

Email: grivtsova@mail.ru
ORCID iD: 0000-0001-9103-9688
SPIN-code: 4423-6844
Scopus Author ID: 583894

D. Sci. (Biol.)

Russian Federation, Obninsk

Ilya V. Kolobaev

Tsyb Medical Radiological Research Centre – branch of the National Medical Research Radiological Center

Email: kolobaeviv@gmail.com
ORCID iD: 0000-0002-3573-6996
SPIN-code: 1382-5529
Scopus Author ID: 878091

Cand. Sci. (Med.)

Russian Federation, Obninsk

Sergei A. Ivanov

Tsyb Medical Radiological Research Centre – branch of the National Medical Research Radiological Center

Email: gluharevaa78@gmail.com
ORCID iD: 0000-0001-7689-6032
SPIN-code: 4264-5167
Scopus Author ID: 16070399200
ResearcherId: N-8221-2017

D. Sci. (Med.), Prof. RAS

Russian Federation, Obninsk

Andrei D. Kaprin

National Medical Research Radiological Center; People’s Friendship University of Russia (RUDN University)

Email: gluharevaa78@gmail.com
ORCID iD: 0000-0001-8784-8415
SPIN-code: 1759-8101
Scopus Author ID: 96775

D. Sci. (Med.), Prof., Acad. RAS

Russian Federation, Obninsk; Moscow

References

  1. Потапнев М.П., Гущина Л.М., Мороз Л.А. Фенотипическая и функциональная гетерогенность субпопуляций нейтрофилов в норме и при патологии. Иммунология. 2019;40(5):84-96 [Potapnev MP, Gushchina LM, Moroz LA. Phenotypic and functional heterogeneity of neutrophil subpopulations in normal and pathological conditions. Immunology. 2019;40(5):84-96 (in Russian)]. DOI:10.24411/ 0206-4952-2019-15009
  2. Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532-5. doi: 10.1126/science.1092385
  3. Fuchs TA, Abed U, Goosmann C, et al. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol. 2007;176(2):231-41. doi: 10.1083/jcb.200606027
  4. Палладина А.Д., Хомякова Н.Ф. Нетоз как механизм прогрессирования рака. Иммунология гемопоэза. 2019;17(2):39-52 [Palladina AD, Khomyakova NF. NETosis as a mechanism of cancer progression. Immunology of hematopoiesis. 2019;17(2):39-52 (in Russian)].
  5. Воробьева Н.В., Черняк Б.В. Нетоз: молекулярные механизмы, роль в физиологии и патологии. Биохимия. 2020;85(10):1383-97 [Vorobyova NV, Chernyak BV. NETosis: molecular mechanisms, role in physiology and pathology. Biochemistry. 2020;85(10):1383-97 (in Russian)]. doi: 10.31857/S0320972520100061
  6. Steinberg SF. Mechanisms for redox-regulation of protein kinase C. Front Pharmacol. 2015;6:128. DOI:10.3389/ fphar.2015.00128
  7. Vorobjeva N, Prikhodko A, Galkin I, et al. Mitochondrial reactive oxygen species are involved in chemoattractant-induced oxidative burst and degranula-tion of human neutrophils in vitro. Eur J Cell Biol. 2017;96(3):254-65. doi: 10.1016/j.ejcb.2017.03.003
  8. Douda DN, Khan MA, Grasemann H, et al. SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx. Proc Natl Acad Sci U S A. 2015;112(9):2817-22. doi: 10.1073/pnas.1414055112
  9. Ravindran M, Khan MA, Palaniyar N. Neutrophil Extracellular Trap Formation: Physiology, Pathology, and Pharmacology. Biomolecules. 2019;9(8):365. doi: 10.3390/biom9080365
  10. Vorobjeva N, Galkin I, Pletjushkina O, et al. Mitochondrial permeability transition pore is involved in oxidative burst and NETosis of human neutrophils. Biochim Biophys Acta Mol Basis Dis. 2020;1866(5):165664. doi: 10.1016/j.bbadis.2020.165664
  11. Metzler KD, Goosmann C, Lubojemska A, et al. A myeloperoxidase-containing complex regulates neutrophil elastase release and actin dynamics during NETosis. Cell. Rep. 2014;8(3):883-96. doi: 10.1016/j.celrep.2014.06.044
  12. Chen KW, Monteleone M, Boucher D, et al. Noncanonical inflammasome signaling elicits gasdermin D-dependent neutrophil extracellular traps. Sci Immunol. 2018;3(26):eaar6676. doi: 10.1126/sciimmunol.aar6676
  13. D’Cruz AA, Speir M, Bliss-Moreau M, et al. The pseudokinase MLKL activates PAD4-dependent NET formation in necroptotic neutrophils. Sci Signal. 2018;11(546):eaao1716. doi: 10.1126/scisignal.aao1716
  14. Rada B, Leto TL. Oxidative innate immune defenses by Nox/Duox family NADPH oxidases. Contrib Microbiol. 2008;15:164-87. doi: 10.1159/000136357
  15. Li P, Li M, Lindberg MR, et al. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J Exp Med. 2010;207(9):1853-62. doi: 10.1084/jem.20100239
  16. Demers M, Krause DS, Schatzberg D, et al. Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proc Natl Acad Sci U S A. 2012;109(32):13076-81. doi: 10.1073/pnas.1200419109
  17. Yaqinuddin A, Kashir J. Novel therapeutic targets for SARS-CoV-2-induced acute lung injury: Targeting a potential IL-1β/neutrophil extracellular traps feedback loop. Med Hypotheses. 2020;143:109906. doi: 10.1016/j.mehy.2020.109906
  18. Schönrich G, Raftery MJ, Samstag Y. Devilishly radical NETwork in COVID-19: Oxidative stress, neutrophil extracellular traps (NETs), and T cell suppression. AdvBiolRegul. 2020;77:100741. doi: 10.1016/j.jbior.2020.100741
  19. Abakumova TV, Gening TP, Dolgova DR, et al. Influence of the levels of the pro-inflammatory cytokines on the formation of extracellular neutrophilic traps in disseminated ovarian cancer. Russian Journal of Immunology. 2019;22(2-2):704-6. doi: 10.31857/S102872210006765-6
  20. Barnes BJ, Adrover JM, Baxter-Stoltzfus A, et al. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J Exp Med. 2020;217(6):e20200652. doi: 10.1084/jem.20200652
  21. Jin X, Zhao Y, Zhang F, et al. Neutrophil extracellular traps involvement in corneal fungal infection. Mol Vis. 2016;22:944-52.
  22. Hwang JW, Kim JH, Kim HJ, et al. Neutrophil extracellular traps in nasal secretions of patients with stable and exacerbated chronic rhinosinusitis and their contribution to induce chemokine secretion and strengthen the epithelial barrier. ClinExpAllergy. 2019;49(10):1306-20. doi: 10.1111/cea.13448
  23. Sollberger G, Tilley DO, Zychlinsky A. Neutrophil Extracellular Traps: The Biology of Chromatin Externalization. Dev Cell. 2018;44(5):542-53. doi: 10.1016/j.devcel.2018.01.01
  24. Twaddell SH, Baines KJ, Grainge C, et al. The Emerging Role of Neutrophil Extracellular Traps in Respiratory Disease. Chest. 2019;156(4):774-82. doi: 10.1016/j.chest.2019.06.012.8
  25. Dicker AJ, Crichton ML, Pumphrey EG, et al. Neutrophil extracellular traps are associated with disease severity and microbiota diversity in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2018;141(1):117-27. doi: 10.1016/j.jaci.2017.04.022
  26. Uddin M, Watz H, Malmgren A, Pedersen F. NETopathic Inflammation in Chronic Obstructive Pulmonary Disease and Severe Asthma. Front Immunol. 2019;10:47. doi: 10.3389/fimmu.2019.00047
  27. Chen L, Zhao Y, Lai D, et al. Neutrophil extracellular traps promote macrophage pyroptosis in sepsis. Cell Death Dis. 2018;9(6):597. doi: 10.1038/s41419-018-0538-5
  28. Ivanov I, Shakhawat R, Sun M, et al. Nucleic acids as cofactors for factor XI and prekallikreinactivation: Different roles for high-molecular-weight kininogen. Thromb Haemost. 2017;117(4):671-81. doi: 10.1160/TH16-09-0691
  29. Noubouossie D, Whelihan M, Yu YB, et al. In vitro activation of coagulation by human neutrophil DNA and histone proteins but not neutrophil extracellular traps. Blood. 2017;129(8):1021-9. doi: 10.1182/blood-2016-06-722298
  30. Okeke EB, Louttit C, Fry C, et al. Inhibition of neutrophil elastase prevents neutrophil extracellular trap formation and rescues mice from endotoxic shock. Biomaterials. 2020;238:119836. doi: 10.1016/j.biomaterials.2020.119836
  31. Novotny J, Oberdieck P, Titova A, et al. Thrombus NET content is associated with clinical outcome in stroke and myocardial infarction. Neurology. 2020;94(22):e2346-60. doi: 10.1212/WNL.0000000000009532
  32. Айтбаев К.А., Муркамилов И.Т., Фомин В.В., и др. Коронавирусная болезнь 2019 (COVID-19): нетоз-ассоциированные механизмы прогрессирования и перспективы терапии, регулирующей образование нейтрофильныхвнеклекточных ловушек (NETs). Actabiomedicascientifica. 2021;6(4):64-73 [Aitbayev KA, Murkamilov IT, Fomin VV, et al. Coronavirus disease 2019 (COVID-19): not a toz- not a pelvis regulating the formation of neutrophilic entrapment traps (nets). Actabiomedicascientifica. 2021;6(4):64-73 (in Russian)]. doi: 10.29413/ABS.2021-6.4.6
  33. Grieshaber-Bouyer R, Nigrovic PA. Neutrophil Heterogeneity as Therapeutic Opportunity in Immune-Mediated Disease. Front Immunol. 2019;10:346. doi: 10.3389/fimmu.2019.00346
  34. Chatfield SM, Thieblemont N, Witko-Sarsat V. Expanding Neutrophil Horizons: New Concepts in Inflammation. J Innate Immun. 2018;10(5-6):422-31. doi: 10.1159/000493101
  35. Fousert E, Toes R, Desai J. Neutrophil Extracellular Traps (NETs) Take the Central Stage in Driving Autoimmune Responses. Cells. 2020;9(4):915. doi: 10.3390/cells9040915
  36. Wolach O, Sellar RS, Martinod K, et al. Increased neutrophil extracellular trap formation promotes thrombosis in myeloproliferative neoplasms. Sci Transl Med. 2018;10(436):eaan8292. doi: 10.1126/scitranslmed.aan8292
  37. Cabrini M, Nahmod K, Geffner J. New insights into the mechanisms controlling neutrophil survival. Curr Opin Hematol. 2010;17(1):31-5. doi: 10.1097/MOH.0b013e3283333b29
  38. von Köckritz-Blickwede M, Nizet V. Innate immunity turned inside-out: antimicrobial defense by phagocyte extracellular traps. J Mol Med (Berl). 2009;87(8):775-83. doi: 10.1007/s00109-009-0481-0
  39. Yost CC, Cody MJ, Harris ES, et al. Impaired neutrophil extracellular trap (NET) formation: a novel innate immune deficiency of human neonates. Blood. 2009;113(25):6419-27. doi: 10.1182/blood-2008-07-171629
  40. Liew PX, Kubes P. The Neutrophil's Role During Health and Disease. Physiol Rev. 2019;99(2):1223-48. doi: 10.1152/physrev.00012.2018
  41. Xiong S, Dong L, Cheng L. Neutrophils in cancer carcinogenesis and metastasis. J Hematol Oncol. 2021;14(1):173. doi: 10.1186/s13045-021-01187-y
  42. Jaillon S, Ponzetta A, Di Mitri D, et al. Neutrophil diversity and plasticity in tumour progression and therapy. Nat Rev Cancer. 2020;20(9):485-503. doi: 10.1038/s41568-020-0281-y
  43. Sagiv JY, Michaeli J, Assi S, et al. Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer. Cell Rep. 2015;10(4):562-73. doi: 10.1016/j.celrep.2014.12.039
  44. Rocks N, Vanwinge C, Radermecker C, et al. Ozone-primed neutrophils promote early steps of tumour cell metastasis to lungs by enhancing their NET production. Thorax. 2019;74(8):768-79. doi: 10.1136/thoraxjnl-2018-211990
  45. Albrengues J, Shields MA, Ng D, et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science. 2018;361(6409):eaao4227. doi: 10.1126/science.aao4227
  46. Berger-Achituv S, Brinkmann V, Abed UA, et al. A proposed role for neutrophil extracellular traps in cancer immunoediting. Front Immunol. 2013;4:48. doi: 10.3389/fimmu.2013.00048
  47. Oklu R, Sheth RA, Wong KHK, et al. Neutrophil extracellular traps are increased in cancer patients but does not associate with venous thrombosis. Cardiovasc Diagn Ther. 2017;7(Suppl 3):S140-9. doi: 10.21037/cdt.2017.08.01
  48. Hsu BE, Tabariès S, Johnson RM, et al. Immature Low-Density Neutrophils Exhibit Metabolic Flexibility that Facilitates Breast Cancer Liver Metastasis. Cell Rep. 2019;27(13):3902-15.e6. doi: 10.1016/j.celrep.2019.05.091
  49. Grilz E, Mauracher LM, Posch F, et al. Citrullinated histone H3, a biomarker for neutrophil extracellular trap formation, predicts the risk of mortality in patients with cancer. Br J Haematol. 2019;186(2):311-20. doi: 10.1111/bjh.15906
  50. Park J, Wysocki RW, Amoozgar Z, et al. Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps. Sci Transl Med. 2016;8(361):361ra138. doi: 10.1126/scitranslmed.aag1711
  51. Vorobjeva NV, Pinegin BV. Neutrophil extracellular traps: mechanisms of formation and role in health and disease. Biochemistry (Mosc). 2014;9(12):1286-96. doi: 10.1134/S0006297914120025
  52. Lewis HD, Liddle J, Coote JE, et al. Inhibition of PAD4 activity is sufficient to disrupt mouse and human NET formation. Nat Chem Biol. 2015;11(3):189-91. doi: 10.1038/nchembio.1735
  53. Volkov DV, Tetz GV, Rubtsov YP, et al. Neutrophil Extracellular Traps (NETs): Opportunities for Targeted Therapy. Acta Naturae. 2021;13(3):15-23. doi: 10.32607/actanaturae.11503
  54. Гусев С.А., Басырева Л.Ю., Максимов Д.И., и др. Витамин D3 блокирует образование нейтрофильных внеклеточных ловушек в цельной крови. Молекулярные, мембранные и клеточные основы функционирования биосистем: Тезисы докладов международной научной конференции, Четырнадцатого съезда Белорусского общественного объединения фотобиологов и биофизиков, Минск, 17–19 июня 2020 года. Минск: Белорусский государственный университет, 2020; c. 114 [Gusev SA, Batyreva LYu, Maksimov DI, et al. Vitamin D3 blokiruet obrazovanie neitrofil'nykh vnekletochnykh lovushek v tsel'noi krovi. Molekuliarnye, membrannye i kletochnye osnovy funktsionirovaniia biosistem: Tezisy dokladov mezhdunarodnoi nauchnoi konferentsii, Chetyrnadtsatogo s"ezda Belorusskogo obshchestvennogo ob"edineniia fotobiologov i biofizikov, Minsk, 17–19 iiunia 2020 goda. Minsk: Belarusian State University, 2020; p. 114 (in Russian)].
  55. Пинегин Б.В., Дагиль Ю.А., Воробьева Н.В., и др. Влияние азоксимера бромида на формирование внеклеточных нейтрофильных ловушек. РМЖ. 2019;1:1-6 [Pinegin BV, Dogel YuA, Vorobyova NV, et al. The effect of azoximer bromide on the formation of extracellular neutrophil traps. Breast cancer. 2019;1:1-6 (in Russian)].

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of the NETos mechanism.

Download (227KB)
3. Fig. 2. Scheme of the metastasis mechanism using NETs.

Download (87KB)
4. Fig. 3. Possible new targets of pharmacotherapy for malignant neoplasms, given the mechanism of NETosis (presented by the author).

Download (97KB)

Copyright (c) 2023 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».