Prospects for molecular profiling in bladder cancer stratification and treatment. A review

Cover Page

Cite item

Full Text

Abstract

Modern trends in oncological care are based on the principles of precision medicine, which necessitates the identification of prognostic and predictive molecular genetic markers. The results of genomic profiling of bladder cancer (BC) represent a wide range of genes involved in carcinogenesis, but the functional significance and clinical potential of most of them have not been sufficiently studied. The aim of this study was to summarize modern scientific and practical data on the trends in precision medicine in the field of oncourology in BC. The materials for the study were domestic and foreign scientific databases, in particular the National Library of Medicine (http://www.ncbi.nlm.nih.gov/) using the electronic resource PubMed (https://pubmed.ncbi.nlm.nih.gov/), eLIBRARY.RU (https://www.elibrary.ru/) and Google Scholar (https://scholar.google.ru/schhp?hl=ru), when searching by keywords: BC, urothelial carcinoma, NGS, molecular profiling, genes, FGFR3, TERT, PIK3CA, TP53, mutations, expression. An analytical review concerning clinical, pathomorphological and molecular genetic data on the problems of diagnosis and treatment of BC included reports on preclinical experimental and clinical studies, meta-analyses, systematic reviews, cohort randomized studies for the period 2002–2025. A number of studies have demonstrated the association of molecular genetic changes in genes encoding receptor and intracellular kinases (FGFR2/3, PIK3CA etc.) with early stages of BC carcinogenesis, provided that the multifactorial prognostic significance is variable, taking into account the availability of modern molecular-targeted drugs. In particular, a pan-FGFR inhibitor, erdafitinib, which has demonstrated its effectiveness, is currently approved for the treatment of common forms of BC. Taking into account the pathogenetic mechanisms, an important further prospect for the use of receptor and intracellular kinase inhibitors in BC is the development and introduction into clinical practice of highly selective systemic and locally delivered forms with the possibility of their use in clinically heterogeneous groups of patients, including those with early stages of the disease. In turn, alterations in genes responsible for DNA repair (TP53, etc.) are associated with an aggressive course of the disease and a corresponding less favorable prognosis. In this direction, the key point of application of personalized therapy is the development and use of agents capable of modulating the activity of proteins of the reparation system at various stages of carcinogenesis. Thus, the mutational and functional status of genes involved in key oncogenic and reparation pathways in BC plays an important role in the context of developing a prognostic model, and also serves as a predictive target for therapeutic intervention.

About the authors

Liudmila N. Lyubchenko

National Medical Research Radiological Centre; Lopatkin Scientific Research Institute of Urology and Interventional Radiology – branch of the National Medical Research Radiological Centre

Author for correspondence.
Email: clingen@mail.ru
ORCID iD: 0000-0003-4775-3299
SPIN-code: 9589-9057

D. Sci. (Med.)

Russian Federation, Moscow; Moscow

Karina M. Сhernavina

Hertsen Moscow Oncology Research Institute – branch of the National Medical Research Radiological Centre

Email: clingen@mail.ru
ORCID iD: 0000-0001-8291-804X
SPIN-code: 1457-7046

Clinical Resident

Russian Federation, Moscow

Koryun A. Ghazaryan

Peoples' Friendship University of Russia named after Patrice Lumumba

Email: clingen@mail.ru
ORCID iD: 0009-0005-1614-7650

 Graduate Student

Russian Federation, Moscow

Ivan N. Zaborskiy

Tsyb Medical Radiological Research Centre – branch of the National Medical Research Radiological Centre

Email: clingen@mail.ru
ORCID iD: 0000-0001-5988-8268
SPIN-code: 2445-5967

Cand. Sci. (Med.)

Russian Federation, Obninsk

Oleg B. Karyakin

Tsyb Medical Radiological Research Centre – branch of the National Medical Research Radiological Centre

Email: clingen@mail.ru
ORCID iD: 0000-0002-6112-2840
SPIN-code: 1486-9379

D. Sci. (Med.), Prof.

Russian Federation, Obninsk

References

  1. Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74(3):229-63. doi: 10.3322/caac.21834
  2. Злокачественные новообразования в России в 2023 году (заболеваемость и смертность). М.: МНИОИ им. П.А. Герцена − филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2024 [Malignant tumors in Russia in 2023 (morbidity and mortality). Moscow: MNIOI im. P.A. Gertsena – filial FGBU “NMITS radiologii” Minzdrava Rossii, 2024 (in Russian)].
  3. Patel VG, Oh WK, Galsky MD. Treatment of muscle-invasive and advanced bladder cancer in 2020. CA Cancer J Clin. 2020;70(5):404-23. doi: 10.3322/caac.21631
  4. Liao Y, Tang H, Wang M, et al. The potential diagnosis role of TP53 mutation in advanced bladder cancer: A meta-analysis. J Clin Lab Anal. 2021;35(5). doi: 10.1002/jcla.23765
  5. Dinney CP, McConkey DJ, Millikan RE, et al. Focus on bladder cancer. Cancer Cell. 2004;6(2):111-6. doi: 10.1016/j.ccr.2004.08.002
  6. Ma J, Roumiguie M, Hayashi T, et al. Long-term Recurrence Rates of Low-risk Non-muscle-invasive Bladder Cancer-How Long Is Cystoscopic Surveillance Necessary? Eur Urol Focus. 2024;10(1):189-96. doi: 10.1016/j.euf.2023.06.012
  7. Knowles MA, Hurst CD. Molecular biology of bladder cancer: new insights into pathogenesis and clinical diversity. Nat Rev Cancer. 2015;15(1):25-41. doi: 10.1038/nrc3817
  8. Henry NL, MacVicar G, Hussain M. Management of patients with muscle-invasive and metastatic bladder cancer. Oncology (Williston Park). 2005;19(10):1333-42.
  9. Мещеряков И.А., Крюков К.А., Митин Н.П., и др. Молекулярные подтипы уротелиальных карцином мочевого пузыря у пациентов молодого возраста. Journal of Siberian Medical Sciences. 2021;(3):82-104 [Meshcheryakov IA, Kryukov KA, Mitin NP, et al. Molecular subtypes of urothelial carcinomas of the bladder in young patients. Journal of Siberian Medical Sciences. 2021;(3):82-104 (in Russian)]. doi: 10.31549/2542-1174-2021-3-82-104
  10. Lindgren D, Frigyesi A, Gudjonsson S, et al. Combined gene expression and genomic profiling define two intrinsic molecular subtypes of urothelial carcinoma and gene signatures for molecular grading and outcome. Cancer Res. 2010;70(9): 3463-72. doi: 10.1158/0008-5472.CAN-09-4213
  11. Sjödahl G, Lauss M, Lövgren K, et al. A molecular taxonomy for urothelial carcinoma. Clin Cancer Res. 2012;18(12):3377-86. doi: 10.1158/1078-0432.CCR-12-0077-T
  12. Damrauer JS, Hoadley KA, Chism DD, et al. Intrinsic subtypes of high-grade bladder cancer reflect the hallmarks of breast cancer biology. Proc Natl Acad Sci USA. 2014;111(8):3110-5. doi: 10.1073/pnas.1318376111
  13. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature. 2014;507(7492):315-22. doi: 10.1038/nature12965
  14. Robertson AG, Kim J, Al-Ahmadie H, et al. Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer. Cell. 2018;174(4):1033. doi: 10.1016/j.cell.2018.07.036
  15. Kamoun A, de Reyniès A, Allory Y, et al. A Consensus Molecular Classification of Muscle-invasive Bladder Cancer. Eur Urol. 2020;77(4):420-33. doi: 10.1016/j.eururo.2019.09.006
  16. Nickerson ML, Dancik GM, Im KM, et al. Concurrent alterations in TERT, KDM6A, and the BRCA pathway in bladder cancer. Clin Cancer Res. 2014;20(18):4935-48. doi: 10.1158/1078-0432.CCR-14-0330
  17. Ross JS, Wang K, Al-Rohil RN, et al. Advanced Urothelial Carcinoma: Next-Generation Sequencing Reveals Diverse Genomic Alterations and Targets of Therapy. Mod Pathology. 2014;27:271-80. doi: 10.1038/modpathol.2013.135
  18. Pietzak EJ, Bagrodia A, Cha EK, et al. Next-Generation Sequencing of Non-muscle Invasive Bladder Cancer Reveals Potential Biomarkers and Rational Therapeutic Targets. Eur Urol. 2017;72:952-9. doi: 10.1016/j.eururo.2017.05.032
  19. Ward DG, Gordon NS, Boucher RH, et al. Targeted Deep Sequencing of Urothelial Bladder Cancers and Associated Urinary DNA: A 23-Gene Panel with Utility for Non-Invasive Diagnosis and Risk Stratification. BJU Int. 2019;124(3):532-44. doi: 10.1111/bju.14808
  20. Garczyk S, Ortiz-Brüchle N, Schneider U, et al. Next-Generation Sequencing Reveals Potential Predictive Biomarkers and Targets of Therapy for Urothelial Carcinoma in Situ of the Urinary Bladder. Am J Pathol. 2020;190:323-32. doi: 10.1016/j.ajpath.2019.10.004
  21. Shao Y, Hu X, Yang Z, et al. Prognostic Factors of Non-Muscle Invasive Bladder Cancer: A Study Based on Next-Generation Sequencing. Cancer Cell Int. 2021;21(1):23. doi: 10.1186/s12935-020-01731-9
  22. Carrasco R, Ingelmo-Torres M, Gomez A, et al. Prognostic implication of TERT promoter mutation and circulating tumor cells in muscle-invasive bladder cancer. World J Urol. 2022;40(8):2033-9. doi: 10.1007/s00345-022-04061-9
  23. Гриднева Я.В., Хмелькова Д.Н., Волкова М.И., и др. Опыт исследования образцов уротелиальной карциномы с помощью панели секвенирования нового поколения на 523 гена. Современная онкология. 2024;26(4):489-94 [Gridneva YV, Khmelkova DN, Volkova MI, et al. Experience of Next-Generation Sequencing in urothelial carcinoma specimens with panel for 523 genes. Modern Oncology. 2024;26(4):489-94 (in Russian)]. doi: 10.26442/18151434.2024.4.203018
  24. Myszka A, Ciesla M, Siekierzynska A, et al. Predictive Molecular Biomarkers of Bladder Cancer Identified by Next-Generation Sequencing-Preliminary Data. J Clin Med. 2024;13(24):7701. doi: 10.3390/jcm13247701
  25. McConkey DJ, Choi W. Molecular Subtypes of Bladder Cancer. Curr Oncol Rep. 2018;20(10):77. doi: 10.1007/s11912-018-0727-5
  26. Bakkar AA, Wallerand H, Radvanyi F, et al. FGFR3 and TP53 gene mutations define two distinct pathways in urothelial cell carcinoma of the bladder. Cancer Res. 2003;63(23):8108-12.
  27. Neuzillet Y, Paoletti X, Ouerhani S, et al. A meta-analysis of the relationship between FGFR3 and TP53 mutations in bladder cancer. PLoS One. 2012;7(12):e48993. doi: 10.1371/journal.pone.0048993
  28. Михайленко Д.С., Сергиенко С.А., Кузнецова Е.Б., и др. Мутации FGFR3, TERT, ТР53 и экспрессия гена FGFR3 как прогностические критерии при раке мочевого пузыря. Онкоурология. 2021;17(1):89-100 [Mikhaylenko DS, Sergienko SA, Kuznetsova EB, et al. FGFR3, TERT, ТР53 mutations and the FGFR3 gene expression in bladder cancer as prognostic markers. Cancer Urology. 2021;17(1): 89-100 (in Russian)]. doi: 10.17650/1726-9776-2021-17-1-89-100
  29. Hafner C, Di Martino E, Pitt E, et al. FGFR3 mutation affects cell growth, apoptosis and attachment in keratinocytes. Exp Cell Res. 2010;316(12):2008-16. doi: 10.1016/j.yexcr.2010.04.021
  30. Benjamin DJ, Mar N, Rezazadeh Kalebasty A. Immunotherapy With Checkpoint Inhibitors in FGFR-Altered Urothelial Carcinoma. Clin Med Insights Oncol. 2022;16:11795549221126252. doi: 10.1177/11795549221126252
  31. Dienstmann R, Rodon J, Prat A, et al. Genomic aberrations in the FGFR pathway: opportunities for targeted therapies in solid tumors. Ann Oncol. 2014;25(3): 552-63. doi: 10.1093/annonc/mdt419
  32. van Rhijn BW, van Tilborg AA, Lurkin I, et al. Novel fibroblast growth factor receptor 3 (FGFR3) mutations in bladder cancer previously identified in non-lethal skeletal disorders. Eur J Hum Genet. 2002;10(12):819-24. doi: 10.1038/sj.ejhg.5200883
  33. Lott S, Wang M, Zhang S, et al. FGFR3 and TP53 mutation analysis in inverted urothelial papilloma: incidence and etiological considerations. Modern Pathology. 2009;22(5):627-32. doi: 10.1038/modpathol.2009.28
  34. Bernard-Pierrot I, Brams A, Dunois-Larde C, et al. Oncogenic properties of the mutated forms of fibroblast growth factor receptor 3b. Carcinogenesis. 2006;27(4):740-7. doi: 10.1093/carcin/bgi290
  35. Олюшина Е.М., Завалишина Л.Э., Алексеенок Е.Ю., и др. Исследование мутационного статуса гена FGFR3 в уротелиальной карциноме мочевого пузыря. Архив патологии. 2023;85(2):5-12 [Oliushina EM, Zavalishina LE, Alekseenok EYu, et al. Investigation of the mutational status of the FGFR3 gene in urothelial bladder carcinoma. Archive of Pathology. 2023;85(2):5-12 (in Russian)]. doi: 10.17116/patol2023850215
  36. van Oers JM, Adam C, Denzinger S, et al. Chromosome 9 deletions are more frequent than FGFR3 mutations in flat urothelial hyperplasias of the bladder. Int J Cancer. 2006;119(5):1212-5. doi: 10.1002/ijc.21958
  37. Tomlinson DC, Baldo O, Harnden P, Knowles MA. FGFR3 protein expression and its relationship to mutation status and prognostic variables in bladder cancer. J Pathol. 2007;213(1):91-8. doi: 10.1002/path.2207
  38. Kwon W-A. FGFR Inhibitors in Urothelial Cancer: From Scientific Rationale to Clinical Development. J Korean Med Sci. 2024;39(43):e320. doi: 10.3346/jkms.2024.39.e320
  39. Peng M, Chu X, Peng Y, et al. Targeted therapies in bladder cancer: signaling pathways, applications, and challenges. MedComm (2020). 2023;4(6):e455. doi: 10.1002/mco2.455
  40. Li R, Linscott J, Catto JWF, et al. FGFR Inhibition in Urothelial Carcinoma. European Urology. 2025;87(2):110-22. doi: 10.1016/j.eururo.2024.09.012
  41. Ascione CM, Napolitano F, Esposito D, et al. Role of FGFR3 in bladder cancer: Treatment landscape and future challenges. Cancer Treat Rev. 2023;115:102530. doi: 10.1016/j.ctrv.2023.102530
  42. Catto JWF, Tran B, Roupret M, et al. Erdafitinib in BCG-treated high-risk non-muscle-invasive bladder cancer. Ann Oncol. 2024;35(1):98-106. doi: 10.1016/j.annonc.2023.09.3116
  43. Benjamin DJ, Hsu R. Frontiers. Treatment approaches for FGFR-altered urothelial carcinoma: targeted therapies and immunotherapy. Front Immunol. 2023;14:1258388. doi: 10.3389/fimmu.2023.1258388
  44. Julian Chavarriaga M. AUA 2024: First Safety and Efficacy Results of the TAR-210 Erdafitinib Intravesical Delivery System in Patients with Non-muscle-Invasive Bladder Cancer with Select FGFR Alterations. American Urological Association (AUA) Annual Meeting, San Antonio, 2024.
  45. Jing W, Wang G, Cui Z, et al. FGFR3 Destabilizes PD-L1 via NEDD4 to Control T-cell-Mediated Bladder Cancer Immune Surveillance. Cancer Res. 2022;82(1):114-29. doi: 10.1158/0008-5472.CAN-21-2362
  46. Siefker-Radtke AO, Powles T, Moreno V, et al. Erdafitinib (ERDA) vs ERDA plus cetrelimab (ERDA+CET) for patients (pts) with metastatic urothelial carcinoma (mUC) and fibroblast growth factor receptor alterations (FGFRa): Final results from the phase 2 Norse study. J Clin Oncol. 2023;41(16_suppl). doi: 10.1200/JCO.2023.41.16_suppl.4504
  47. Tully KH, Jütte H, Wirtz RM, et al. Prognostic Role of FGFR Alterations and FGFR mRNA Expression in Metastatic Urothelial Cancer Undergoing Checkpoint Inhibitor Therapy. Urology. 2021;157:93-101. doi: 10.1016/j.urology.2021.05.055
  48. Sweis RF, Gajate P, Morales-Barrera R, et al. Rogaratinib Plus Atezolizumab in Cisplatin-Ineligible Patients With FGFR RNA-Overexpressing Urothelial Cancer. JAMA Oncology. 2024;10(11):1565-70. doi: 10.1001/jamaoncol.2024.3900
  49. Liu H-P, Jia W, Kadeerhan G, et al. Individualized prognosis stratification in muscle invasive bladder cancer: A pairwise TP53-derived transcriptome signature. Transl Oncol. 2023;29:101629. doi: 10.1016/j.tranon.2023.101629
  50. Rocca V, Blandino G, D’Antona L, et al. Li-Fraumeni Syndrome: Mutation of TP53 Is a Biomarker of Hereditary Predisposition to Tumor: New Insights and Advances in the Treatment. Cancers. 2022;14(15):3664. doi: 10.3390/cancers14153664
  51. Tao Y, Li X, Zhang Y, et al. TP53-related signature for predicting prognosis and tumor microenvironment characteristics in bladder cancer: A multi-omics study. Front Genet. 2022;13:1057302. doi: 10.3389/fgene.2022.1057302
  52. Wu X, Lv D, Cai C, et al. A TP53-Associated Immune Prognostic Signature for the Prediction of Overall Survival and Therapeutic Responses in Muscle-Invasive Bladder Cancer. Front Immunol. 2020;11:590618. doi: 10.3389/fimmu.2020.590618
  53. Li H, Lu H, Cui W, et al. A TP53-based immune prognostic model for muscle-invasive bladder cancer. Aging (Albany NY). 2020;13(2):1929-46. doi: 10.18632/aging.202150
  54. Lyu Q, Lin A, Cao M, et al. Alterations in TP53 Are a Potential Biomarker of Bladder Cancer Patients Who Benefit From Immune Checkpoint Inhibition. Cancer Control. 2020;27(1):1073274820976665. doi: 10.1177/1073274820976665
  55. Ciccarese C, Massari F, Blanca A, et al. Tp53 and its potential therapeutic role as a target in bladder cancer. Expert Opin Ther Targets. 2017;21(4):401-14. doi: 10.1080/14728222.2017.1297798
  56. Шкурлатовская К.М., Орлова А.С., Силина Е.В., и др. Молекулярно-генетические механизмы мастоцитоза. Патологическая физиология и экспериментальная терапия. 2019;63(3):127-33 [Shkurlatovskaia KM, Orlova AS, Silina EV, et al. Molecular and genetic mechanisms mastocytosis. Patologicheskaya Fiziologiya i Eksperimentalnaya terapiya (Pathological Physiology and Experimental Therapy). 2019;63(3):127-33 (in Russian)]. doi: 10.25557/0031-2991.2019.03.127-133
  57. Wang Z, Shang J, Li Z, et al. PIK3CA Is Regulated by CUX1, Promotes Cell Growth and Metastasis in Bladder Cancer via Activating Epithelial-Mesenchymal Transition. Front Oncol. 2020;10:536072. doi: 10.3389/fonc.2020.536072
  58. Platt FM, Hurst CD, Taylor CF, et al. Spectrum of phosphatidylinositol 3-kinase pathway gene alterations in bladder cancer. Clin Cancer Res. 2009;15(19): 6008-17. doi: 10.1158/1078-0432.CCR-09-0898
  59. Zhao L, Vogt PK. Helical domain and kinase domain mutations in p110alpha of phosphatidylinositol 3-kinase induce gain of function by different mechanisms. Proc Natl Acad Sci U S A. 2008;105(7):2652-7. doi: 10.1073/pnas.0712169105
  60. Lopez-Knowles E, Hernandez S, Malats N, et al. PIK3CA mutations are an early genetic alteration associated with FGFR3 mutations in superficial papillary bladder tumors. Cancer Res. 2006;66(15):7401-4. doi: 10.1158/0008-5472.CAN-06-1182
  61. Ousati Ashtiani Z, Mehrsai AR, Pourmand MR, Pourmand GR. High Resolution Melting Analysis for Rapid Detection of PIK3CA Gene Mutations in Bladder Cancer: A Mutated Target for Cancer Therapy. Urol J. 2018;15(1):26-31. doi: 10.22037/uj.v0i0.3987
  62. Duenas M, Martínez-Fernández M, García-Escudero R, et al. PIK3CA gene alterations in bladder cancer are frequent and associate with reduced recurrence in non-muscle invasive tumors. Mol Carcinog. 2015;54(7):566-76. doi: 10.1002/mc.22125
  63. Shuman L, Pham J, Wildermuth T, et al. Urothelium-Specific Expression of Mutationally Activated PIK3CA Initiates Early Lesions of Noninvasive Bladder Cancer. Am J Pathol. 2023;193(12):2133-43. doi: 10.1016/j.ajpath.2023.07.001
  64. McPherson V, Reardon B, Bhayankara A, et al. A phase 2 trial of buparlisib in patients with platinum-resistant metastatic urothelial carcinoma. Cancer. 2020;126(20):4532-44. doi: 10.1002/cncr.33071
  65. Wang L, Sustic T, Oliveira R, et al. A Functional Genetic Screen Identifies the Phosphoinositide 3-kinase Pathway as a Determinant of Resistance to Fibroblast Growth Factor Receptor Inhibitors in FGFR Mutant Urothelial Cell Carcinoma. Eur Urol. 2017;71(6):858-62. doi: 10.1016/j.eururo.2017.01.021
  66. Hyman DM, Tran B, Paz-Ares L, et al. Combined PIK3CA and FGFR Inhibition With Alpelisib and Infigratinib in Patients With PIK3CA-Mutant Solid Tumors, With or Without FGFR Alterations. JCO Precis Oncol. 2019;3:1-13. doi: 10.1200/PO.19.00221
  67. Borcoman E, De La Rochere P, Richer W, et al. Inhibition of PI3K pathway increases immune infiltrate in muscle-invasive bladder cancer. Oncoimmunology. 2019;8(5):e1581556. doi: 10.1080/2162402X.2019.1581556
  68. Liu M, Zhang Y, Jian Y, et al. The regulations of telomerase reverse transcriptase (TERT) in cancer. Cell Death Dis. 2024;15(1):90. doi: 10.1038/s41419-024-06454-7
  69. Селиванова Л.С., Волганова К.С., Абросимов А.Ю. Мутации промотора теломеразной обратной транскриптазы (TERT) в опухолях эндокринных органов человека: биологическое и прогностическое значение. Архив патологии. 2016;78(1):62-9 [Selivanova LS, Volganova KS, Abrosimov AIu. Telomerase reverse transcriptase (TERT) promoter mutations in the tumors of human endocrine organs: Biological and prognostic value. Archive of Pathology. 2016;78(1): 62-9 (in Russian)]. doi: 10.17116/patol201678162-68
  70. Рубцова М.П., Василькова Д.П., Малявко А.Н., и др. Функции теломеразы: удлинение теломер и не только. Acta Naturae. 2012;4(2):44-61 [Rubtsova MP, Vasilkova DP, Malyavko AN, et al. Funktsii telomerazy: udlinenie telomer i ne tolko. Acta Naturae. 2012;4(2):44-61 (in Russian)]. EDN:PBFZAN
  71. El Azzouzi M, El Ahanidi H, Hassan I, et al. Comprehensive behavioural assessment of TERT in bladder cancer. Urol Oncol. 2024;42(12):451.e19-29. doi: 10.1016/j.urolonc.2024.06.024
  72. Cheng L, Zhang S, Wang M, Lopez-Beltran A. Biological and clinical perspectives of TERT promoter mutation detection on bladder cancer diagnosis and management. Hum Pathol. 2023;133:56-75. doi: 10.1016/j.humpath.2022.06.005
  73. Gupta S, Vanderbilt CM, Lin YT, et al. A Pan-Cancer Study of Somatic TERT Promoter Mutations and Amplification in 30,773 Tumors Profiled by Clinical Genomic Sequencing. J Mol Diagn. 2021;23(2):253-63. doi: 10.1016/j.jmoldx.2020.11.003
  74. Agarwal N, Rinaldetti S, Cheikh BB, et al. TRIM28 is a transcriptional activator of the mutant TERT promoter in human bladder cancer. Proc Natl Acad Sci USA. 2021;118(38):e2102423118. doi: 10.1073/pnas.2102423118
  75. Huang DS, Wang Z, He XJ, et al. Recurrent TERT promoter mutations identified in a large-scale study of multiple tumour types are associated with increased TERT expression and telomerase activation. Eur J Cancer. 2015;51(8):969-76. doi: 10.1016/j.ejca.2015.03.010
  76. Tran L, Xiao JF, Agarwal N, et al. Advances in bladder cancer biology and therapy. Nat Rev Cancer. 2021;21(2):104-21. doi: 10.1038/s41568-020-00313-1
  77. Allory Y, Beukers W, Sagrera A, et al. Telomerase reverse transcriptase promoter mutations in bladder cancer: High frequency across stages, detection in urine, and lack of association with outcome. Eur Urol. 2014;65:360-6. doi: 10.1016/j.eururo.2013.08.052
  78. Rachakonda PS, Hosen I, de Verdier PJ, et al. TERT promoter mutations in bladder cancer affect patient survival and disease recurrence through modification by a common polymorphism. Proc Natl Acad Sci USA. 2013;110:17426-31. doi: 10.1073/pnas.1310522110
  79. Batista R, Lima L, Vinagre J, et al. TERT Promoter Mutation as a Potential Predictive Biomarker in BCG-Treated Bladder Cancer Patients. Int J Mol Sci. 2020;21(3):947. doi: 10.3390/ijms21030947
  80. Shuai H, Duan X, Zhou JJ, et al. Effect of the TERT mutation on the prognosis of patients with urothelial carcinoma: a systematic review and meta-analysis. BMC Urol. 2023;23(1):177. doi: 10.1186/s12894-023-01349-9
  81. Wan S, Liu X, Hua W, et al. The role of telomerase reverse transcriptase (TERT) promoter mutations in prognosis in bladder cancer. Bioengineered. 2021;12(1): 1495-504. doi: 10.1080/21655979.2021.1915725
  82. Descotes F, Kara N, Decaussin-Petrucci M, et al. Non-invasive prediction of recurrence in bladder cancer by detecting somatic TERT promoter mutations in urine. Br J Cancer. 2017;117:583-7. doi: 10.1038/bjc.2017.210
  83. Kovacs A, Sükösd F, Kuthi L, et al. Novel method for detecting frequent TERT promoter hot spot mutations in bladder cancer samples. Clin Exp Med. 2024;24(1):192. doi: 10.1007/s10238-024-01464-3
  84. Zvereva M, Pisarev E, Hosen I, et al. Activating Telomerase TERT Promoter Mutations and Their Application for the Detection of Bladder Cancer. Int J Mol Sci. 2020;21(17):6034. doi: 10.3390/ijms21176034
  85. Agarwal N, Zhou Q, Arya D, et al. AST-487 Inhibits RET Kinase Driven TERT Expression in Bladder Cancer. Int J Mol Sci. 2022;23(18):10819. doi: 10.3390/ijms231810819
  86. Saitoh H, Mori K, Kudoh S, et al. BCG effects on telomerase activity in bladder cancer cell lines. Int J Clin Oncol. 2002;7(3):165-70. doi: 10.1007/s101470200024
  87. Kailashiya C, Sharma HB, Kailashiya J. Telomerase based anticancer immunotherapy and vaccines approaches. Vaccine. 2017;35(43):5768-75. doi: 10.1016/j.vaccine.2017.09.011

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».