Network meta-analysis for clinicians
- Authors: Bogdanov A.A.1, Bogdanov A.A.1
-
Affiliations:
- Saint Petersburg Clinical Research and Practice Centre for Specialized Types of Medical Care (Oncological)
- Issue: Vol 23, No 3 (2021)
- Pages: 418-424
- Section: CLINICAL ONCOLOGY
- URL: https://journal-vniispk.ru/1815-1434/article/view/88099
- DOI: https://doi.org/10.26442/18151434.2021.3.201202
- ID: 88099
Cite item
Full Text
Abstract
Decision making in clinical practice requires consideration of the relative efficacy and safety of medical interventions. A systematic review and meta-analysis, the results of which have the highest level of confidence in evidence-based medicine, only compare the effectiveness of two interventions, provided that there is a direct comparison between them in a set of randomized controlled trials. The development of statistical methods has led to the development of the network meta-analysis method, the application of which allows comparison for more than two interventions and even if the interventions were not directly compared in randomized controlled trials, but have a common comparison intervention. As a result, network meta-analysis is increasingly being used as an evidence base for the effectiveness of medical interventions. However, there are important assumptions and conditions underlying the performance of network meta-analysis. In this work, we tried to outline the main aspects of network meta-analysis that are important for clinicians in terms of its implementation and interpretation of its results.
Full Text
##article.viewOnOriginalSite##About the authors
Alexey A. Bogdanov
Saint Petersburg Clinical Research and Practice Centre for Specialized Types of Medical Care (Oncological)
Author for correspondence.
Email: a.bogdanov@oncocentre.ru
ORCID iD: 0000-0002-7887-4635
Cand. Sci. (Phys.-Math.)
Russian Federation, Saint PetersburgAndrey A. Bogdanov
Saint Petersburg Clinical Research and Practice Centre for Specialized Types of Medical Care (Oncological)
Email: vip.nasa@bk.ru
Res. Assist.
Russian Federation, Saint PetersburgReferences
- Masic I, Miokovic M, Muhamedagic B. Evidence based medicine – new approaches and challenges. Acta Inform Med. 2008;16(4):219-25. doi: 10.5455/aim.2008.16.219-225
- Murad MH, Asi N, Alsawas M, Alahdab F. New evidence pyramid. Evidence Based Medicine. 2016;21(4):125-7. doi: 10.1136/ebmed-2016-110401
- Lockwood C, Oh EG. Systematic reviews: Guidelines, tools and checklists for authors. Nurs Health Sci. 2017;19(3):273-7. doi: 10.1111/nhs.12353
- Khan KS, Kunz R, Kleijnen J, Antes G. Five steps to conducting a systematic review. J R Soc Med. 2003;96(3):118-21. doi: 10.1258/jrsm.96.3.118
- Berlin JA, Golub RM. Meta-analysis as Evidence: Building a Better Pyramid. JAMA. 2014;312(6):603-6. doi: 10.1001/jama.2014.8167
- Bucher HC, Guyatt GH, Griffith LE, Walter SD. The results of direct and indirect treatment comparisons in meta-analysis of randomized controlled trials. J Clin Epidemiol. 1997;50(6):683-91. doi: 10.1016/s0895-4356(97)00049-8
- Higgins JP, Whitehead A. Borrowing strength from external trials in a meta-analysis. Stat Med. 1996;15(24):2733-49. doi: 10.1002/(sici)1097-0258(19961230)15:24<2733::aid-sim562>3.0.co;2-0
- Salanti G. Indirect and mixed-treatment comparison, network, or multiple-treatments meta-analysis: many names, many benefits, many concerns for the next generation evidence synthesis tool. Res Synth Methods. 2012;3(2):80-97. doi: 10.1002/jrsm.1037
- Caldwell DM, Ades AE, Higgins JP. Simultaneous comparison of multiple treatments: combining direct and indirect evidence. Br Med J (Clin Res Ed). 2005;331(7521):897-900. doi: 10.1136/bmj.331.7521.897
- Lu G, Ades AE. Combination of direct and indirect evidence in mixed treatment comparisons. Stat Med. 2004;23(20):3105-24. doi: 10.1002/sim.1875
- Faltinsen EG, Storebø OJ, Jakobsen JC, et al. Network meta-analysis: the highest level of medical evidence? BMJ Evid Based Med. 2018;23(2):56-9. doi: 10.1136/bmjebm-2017-110887
- Dias S, Caldwell DM. Network meta-analysis explained. Arch Dis Child Fetal Neonatal Ed. 2019;104(1):F8-12. doi: 10.1136/archdischild-2018-315224
- Rouse B, Chaimani A, Li T. Network meta-analysis: an introduction for clinicians. Intern Emerg Med. 2017;12(1):103-11. doi: 10.1007/s11739-016-1583-7
- Tonin FS, Rotta I, Mendes AM, Pontarolo R. Network meta-analysis: a technique to gather evidence from direct and indirect comparisons. Pharm Pract (Granada). 2017;15(1):943. doi: 10.18549/PharmPract.2017.01.943
- Ter Veer E, van Oijen MGH, van Laarhoven HWM. The Use of (Network) Meta-Analysis in Clinical Oncology. Front Oncol. 2019;9:822. doi: 10.3389/fonc.2019.00822
- Zarin W, Veroniki AA, Nincic V, et al. Characteristics and knowledge synthesis approach for 456 network meta-analyses: a scoping review. BMC Med. 2017;15(1):3. doi: 10.1186/s12916-016-0764-6
- Ge L, Tian J-h, Li X-x, et al. Epidemiology Characteristics, Methodological Assessment and Reporting of Statistical Analysis of Network Meta-Analyses in the Field of Cancer. Sci Rep. 2016;6(1):37208. doi: 10.1038/srep37208
- Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Br Med J (Clin Res Ed). 2009;339:b2535. doi: 10.1136/bmj.b2535
- Hutton B, Salanti G, Caldwell DM, et al. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Intern Med. 2015;162(11):777-84. doi: 10.7326/m14-2385
- Higgins JPT, Altman DG, Gøtzsche PC, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. Br Med J (Clin Res Ed). 2011;343:d5928. doi: 10.1136/bmj.d5928
- Rethlefsen ML, Murad MH, Livingston EH. Engaging Medical Librarians to Improve the Quality of Review Articles. JAMA. 2014;312(10):999-1000. doi: 10.1001/jama.2014.9263
- Li L, Tian J, Tian H, et al. Network meta-analyses could be improved by searching more sources and by involving a librarian. J Clin Epidemiol.2014;67(9):1001-7. doi: 10.1016/j.jclinepi.2014.04.003
- Altwairgi AK, Booth CM, Hopman WM, Baetz TD. Discordance Between Conclusions Stated in the Abstract and Conclusions in the Article: Analysis of Published Randomized Controlled Trials of Systemic Therapy in Lung Cancer. J Clin Oncol. 2012;30(28):3552-7. doi: 10.1200/jco.2012.41.8319
- McAuley L, Pham B, Tugwell P, Moher D. Does the inclusion of grey literature influence estimates of intervention effectiveness reported in meta-analyses? The Lancet. 2000;356(9237):1228-31. doi: 10.1016/S0140-6736(00)02786-0
- Egger M, Smith GD, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. Br Med J (Clin Res Ed). 1997;315(7109):629-34. doi: 10.1136/bmj.315.7109.629
- Trinquart L, Ioannidis JPA, Chatellier G, Ravaud P. A test for reporting bias in trial networks: simulation and case studies. BMC Medical Research Methodology. 2014;14(1):112. doi: 10.1186/1471-2288-14-112
- Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. Br Med J (Clin Res Ed). 2003;327(7414):557-60. doi: 10.1136/bmj.327.7414.557
- Watt J, Tricco AC, Straus S, et al. Research Techniques Made Simple: Network Meta-Analysis. J Invest Dermatol. 2019;139(1):4-12.e1. doi: 10.1016/j.jid.2018.10.028
- Higgins J, Thomas J, Chandler J, et al. Cochrane handbook for systematic reviews of interventions version 6.2. Cochrane, 2021.
- Cipriani A, Higgins JP, Geddes JR, Salanti G. Conceptual and technical challenges in network meta-analysis. Ann Intern Med. 2013;159(2):130-7. doi: 10.7326/0003-4819-159-2-201307160-00008
- IntHout J, Ioannidis JP, Borm GF. Obtaining evidence by a single well-powered trial or several modestly powered trials. Statistical Methods in Medical Research. 2016;25(2):538-52. doi: 10.1177/0962280212461098
- Serghiou S, Goodman SN. Random-Effects Meta-analysis: Summarizing Evidence With Caveats. JAMA. 2019;321(3):301-2. doi: 10.1001/jama.2018.19684
- Efthimiou O, Debray TP, van Valkenhoef G, et al. GetReal in network meta-analysis: a review of the methodology. Res Synth Methods. 2016;7(3):236-63. doi: 10.1002/jrsm.1195
- Hassan S, Ravishankar N, Nair SN. Methodological considerations in network meta-analysis. Int J Med Sci Public Health. 2015;4(5):1-7.
- Dias S, Ades AE, Welton NJ, et al. Network meta-analysis for decision-making: John Wiley and Sons, 2018.
- Aronow PM, Miller BT. Foundations of agnostic statistics: Cambridge University Press, 2019.
- Greco T, Edefonti V, Biondi-Zoccai G, et al. A multilevel approach to network meta-analysis within a frequentist framework. Contemporary Clinical Trials. 2015;42:51-9. doi: 10.1016/j.cct.2015.03.005
- Madden LV, Piepho HP, Paul PA. Statistical Models and Methods for Network Meta-Analysis. Phytopathology. 2016;106(8):792-806. doi: 10.1094/phyto-12-15-0342-rvw
- Kim H, Gurrin L, Ademi Z, Liew D. Overview of methods for comparing the efficacies of drugs in the absence of head-to-head clinical trial data. Brit J Clin Pharm. 2014;77(1):116-21. doi: 10.1111/bcp.12150
- Ohlssen D, Price KL, Xia HA, et al. Guidance on the implementation and reporting of a drug safety Bayesian network meta-analysis. Pharm Stat. 2014;13(1):55-70. doi: 10.1002/pst.1592
- Kibret T, Richer D, Beyene J. Bias in identification of the best treatment in a Bayesian network meta-analysis for binary outcome: a simulation study. Clin Epidemiol. 2014;6:451-60. doi: 10.2147/clep.s69660
- Uhlmann L, Jensen K, Kieser M. Bayesian network meta-analysis for cluster randomized trials with binary outcomes. Res Synth Methods. 2017;8(2):236-50. doi: 10.1002/jrsm.1210
- Shim SR, Kim SJ, Lee J, Rücker G. Network meta-analysis: application and practice using R software. Epidemiol Health. 2019;41:e2019013. doi: 10.4178/epih.e2019013
- Seide SE, Jensen K, Kieser M. A comparison of Bayesian and frequentist methods in random-effects network meta-analysis of binary data. Res Synth Methods. 2020;11(3):363-78. doi: 10.1002/jrsm.1397
- Rücker G, Krahn U, König J, et al. Network meta-analysis using frequentist methods. (netmeta): R package version 1.2-1. 2020
- van Valkenhoef G, Lu G, de Brock B, et al. Automating network meta-analysis. Res Synth Methods. 2012;3(4):285-99. doi: 10.1002/jrsm.1054
- Богданов А.А., Моисеенко Ф.В., Егоренков В.В., и др. Сравнение эффективности первой линии терапии разными поколениями ингибиторов EGFR-тирозинкиназы у пациентов с распространенным EGFR-ассоциированным немелкоклеточным раком легкого: сетевой метаанализ данных общей выживаемости. Современная Онкология. 2021;23(1):116-20 [Bogdanov AA, Moiseenko FV, Egorenkov VV, et al. Comparison of the efficacy of first-line therapy with different generations of EGFR tyrosine kinase inhibitors in patients with advanced EGFR-associated non-small cell lung cancer: a network meta-analysis of overall survival data. Journal of Modern Oncology. 2021;23(1):116-20 (in Russian)]. doi: 10.26442/18151434.2021.1.200731
- Scodes S, Cappuzzo F. Determining the appropriate treatment for different EGFR mutations in non-small cell lung cancer patients. Expert Review of Respiratory Medicine. 2020;14(6):565-76. doi: 10.1080/17476348.2020.1746646
- Rücker G, Schwarzer G. Ranking treatments in frequentist network meta-analysis works without resampling methods. BMC Med Res Methodol. 2015;15(1):58. doi: 10.1186/s12874-015-0060-8
- Mbuagbaw L, Rochwerg B, Jaeschke R, et al. Approaches to interpreting and choosing the best treatments in network meta-analyses. Systematic Reviews. 2017;6(1):79. doi: 10.1186/s13643-017-0473-z
- Li J, Kwok HF. Current Strategies for Treating NSCLC: From Biological Mechanisms to Clinical Treatment. Cancers (Basel). 2020;12(6):1587. doi: 10.3390/cancers12061587
- Ventresca M, Schünemann HJ, Macbeth F, et al. Obtaining and managing data sets for individual participant data meta-analysis: scoping review and practical guide. BMC Med Res Methodol. 2020;20(1):113. doi: 10.1186/s12874-020-00964-6
- Riley RD, Lambert PC, Abo-Zaid G. Meta-analysis of individual participant data: rationale, conduct, and reporting. Br Med J (Clin Res Ed). 2010;340:c221. doi: 10.1136/bmj.c221
- Lipworth W. Real-world Data to Generate Evidence About Healthcare Interventions. Asian Bioethics Review. 2019;11(3):289-98. doi: 10.1007/s41649-019-00095-1
- Bartlett VL, Dhruva SS, Shah ND, et al. Feasibility of Using Real-World Data to Replicate Clinical Trial Evidence. JAMA Network Open. 2019;2(10):e1912869-e. doi: 10.1001/jamanetworkopen.2019.12869
- Ito K, Morise M, Wakuda K, et al. A multicenter cohort study of osimertinib compared with afatinib as first-line treatment for EGFR-mutated non-small-cell lung cancer from practical dataset: CJLSG1903. ESMO Open. 2021;6(3):100115. doi: 10.1016/j.esmoop.2021.100115
Supplementary files
