Теория «растворения» и «конденсации» физико-геометрических характеристик поперечного сечения произвольной формы при кручении стержней
- Авторы: Колчунов В.И.1, Демьянов А.И.1, Наумов Н.В.1
-
Учреждения:
- Юго-Западный государственный университет
- Выпуск: Том 15, № 4 (2019)
- Страницы: 261-270
- Раздел: Расчет и проектирование строительных конструкций
- URL: https://journal-vniispk.ru/1815-5235/article/view/346278
- DOI: https://doi.org/10.22363/1815-5235-2019-15-4-261-270
- ID: 346278
Цитировать
Полный текст
Аннотация
Цель исследования заключается в продолжении разработки методики определения напряженно-деформированного состояния стержней при кручении методами сопротивления материалов. Методы. Предложен новый подход определения касательных напряжений кручения для стержней произвольного поперечного сечения, базирующийся на упрощенных предпосылках сопротивления материалов. Особенность подхода заключается в аппроксимации прямоугольных и любых сложных поперечных сечений железобетонных конструкций путем описывания вокруг поперечного сечения большого круга с последующим его разбиением на малые квадраты с вписанными в них кругами. Результаты. Сформулированы три теоремы, первая из которых связывает накопление касательных напряжений (приращения) от граней прямоугольника до середины прямоугольного сечения с формулой определения касательных напряжений для круглых сечений. Вторая теорема позволяет установить связь между касательными напряжениями, вычисленными для каждого из малых квадратов-кругов, и касательными напряжениями большого круга через их приращение Третья теорема дает возможность найти касательные напряжения для каждого из малых квадратовкругов. Предложенный подход позволяет снять вопрос о необходимости использования специальных таблиц для расчета и не только в упругой стадии. Он также позволяет отделить напряженно-деформированное состояние в целом наборе круглых сечений от дополнительного поля, связанного с депланацией прямоугольного сечения. Помимо этого, представленные подходы дают возможность учитывать концентрацию угловых деформаций во входящих углах и других резко изменяющихся геометрических параметрах.
Об авторах
Владимир Иванович Колчунов
Юго-Западный государственный университет
Автор, ответственный за переписку.
Email: vlik52@mail.ru
доктор технических наук, профессор кафедры уникальных зданий и сооружений
Российская Федерация, 305040, Курск, ул. 50 лет Октября, 94Алексей Иванович Демьянов
Юго-Западный государственный университет
Email: vlik52@mail.ru
кандидат технических наук, доцент кафедры уникальных зданий и сооружений.
Российская Федерация, 305040, Курск, ул. 50 лет Октября, 94Николай Валерьевич Наумов
Юго-Западный государственный университет
Email: vlik52@mail.ru
аспирант кафедры уникальных зданий и сооружений
Российская Федерация, 305040, Курск, ул. 50 лет Октября, 94Список литературы
- Golyshev A.B. (2009). Soprotivlenie zhelezobetona [The resistance of reinforced concrete]. Kiev, Osnova Publ., 432. (In Russ.)
- Bondarenko V.M. (2004). Raschetnye modeli silovogo soprotivleniya zhelezobetona [The computational model of a power resistance of reinforced concrete]. Moscow, ASV Publ., 472. (In Russ.)
- Iakovenko I., Kolchunov V., Lymar I. (2017). Rigidity of reinforced concrete structures in the presence of different cracks. MATEC Web of Conferences. 6th International Scientific Conference “Reliability and Durability of Railway Transport Engineering Structures and Buildings”. Transbud–2017, 116, 02016, 1–12. doi: 10.1051/ matecconf/201711602016
- Demyanov A., Kolchunov Vl. (2017). The dynamic loading in longitudinal and transverse reinforcement at instant emergence of the spatial сrack in reinforced concrete element under the action of a torsion with bending. Journal of Applied Engineering Science, 15, 456, 377–382. doi: 10.5937/jaes15-14663
- Jariwalaa V.H., Patel P.V., Purohit S.P. (2013). Strengthening of RC Beams Subjected to Combined Torsion and Bending with GFRP Composites. Procedia Engineering, 51, 282–289.
- Rahal K.N., Collins M.P. (2006). Compatibility Torsion in Spandrel Beams Using Modified Compression Field Theory. ACI Structural Journal, 103(3), 328–338.
- Demyanov A.I., Kolchunov Vl.I. (2018). To the approximation of rectangular and complex cross-sections of reinforced concrete structures under the action torsion with bending. IOP Conference Series: Materials Science and Engineering, 456, 012104, 1–12. doi: 10.1088/1757-899X/ 456/1/012104
- David A.E., Thomas L.H., Simon A.N., Jonathan E.C. (2018). Veering and nonlinear interactions of a clamped beam in bending and torsion. Journal of Sound and Vibration, 416, 1–16.
- Loïc B., Guilhem M., Rached F., Bruno C. (2016). Static and dynamic analysis of bending-torsion coupling of a CFRP sandwich beam. Composite Structures, 145, 26–36. doi: 10.1016/j.compstruct.2016.02.055
- Ogawa Y., Kawasaki Y., Okamoto T. (2014). Fracture behavior of RC members subjected to bending shear and torsion using acoustic emission method. Construction and Building Materials, 67, 165–169. doi: 10.1016/ j.conbuildmat.2014.05.100
- Lukina A.A., Kholopova I.S., Alpatova V.Y., Solovieva A.V. (2016). Beams with corrugated web: calculation peculiarities of bending torsion analysis. Procedia Engineering, 153, 414–418. doi: 10.1016/j.proeng.2016.08.143
- Kashani M.T., Hashemi S.M. (2018). A finite element formulation for bending-torsion coupled vibration analysis of delaminated beams under combined axial load and end moment. Shock and Vibration, 2018, 1348970, 1–13.
- Kolchunov Vl.I., Demyanov A.I. (2019). K opredeleniyu napryazhenno-deformirovannogo sostoyaniya sterzhney proizvolnogo poperechnogo secheniya pri kruchenii metodami soprotivleniya materialov [To determination of stress-strain state for a rod of arbitrary cross-section under torsion using resistance of materials]. Buildings and Reconstruction, 81(1), 10–22. (In Russ.)
- Murashev V.I. (1950) Treshchinoustoychivost, zhestkost i prochnost zhelezobetona [Crack resistance, stiffness and strength of reinforced concrete]. Moscow, Mashstroyizdat Publ., 268. (In Russ.)
Дополнительные файлы


