Влияние геометрических исследований поверхностей вращения и поверхностей переноса на создание уникальных сооружений
- Авторы: Гбагуиди Айссе Ж.Л.1
-
Учреждения:
- Университет Абомей-Калави
- Выпуск: Том 15, № 4 (2019)
- Страницы: 308-314
- Раздел: Теория тонких оболочек
- URL: https://journal-vniispk.ru/1815-5235/article/view/346283
- DOI: https://doi.org/10.22363/1815-5235-2019-15-4-308-314
- ID: 346283
Цитировать
Полный текст
Аннотация
Цели. Применение, проектирование и расчет архитектурно-строительных конструкций в форме гладких и составных поверхностей стали актуальными и востребованными в последнее время, что обусловило цель данной статьи - проанализировать применение аналитических поверхностей, за данных векторными, параметрическими или явными уравнениями, в реальных конструкциях. Методы. Определяется связь между исследованиями по геометрии поверхностей вращения и переноса и созданием новых форм тонкостенных сооружений и зданий. По каждой поверхности приведен пример реального сооружения. В статье не рассматриваются составные, многогранные, фрактальные поверхности, а также поверхности, не задаваемые аналитически. Результаты. Выяснилось, что в мире нашли применение только небольшое число рассматриваемых поверхностей этих двух классов. В конце статьи приведена библиография, в которой изложены математическая сторона проектирования аналитических поверхностей, их компьютерное моделирование, более подробные сведения о реальных сооружениях в форме рассматриваемых поверхностей.
Об авторах
Жерар Леопольд Гбагуиди Айссе
Университет Абомей-Калави
Автор, ответственный за переписку.
Email: gbaguidi.gerard@yahoo.fr
доктор наук, профессор факультета гражданского строительства; директор, Высшая школа гражданского строительства имени А.К. Верещагина, заведующий лабораторией материалов и конструкций
02 BP 244 Котону, Республика БенинСписок литературы
- Krivoshapko S.N., Ivanov V.N. (2015). Encyclopaedia of Analytical Surfaces. Switzerland, Springer International Publishing, 752.
- Krivoshapko S.N., Mamieva I.A. (2018). Analiticheskie poverhnosti v arhitekture zdaniy, konstruktziy i izdeliy [Analytical surfaces in architecture of buildings, structures, and products]. Moscow: Librocom Publ., 328. (In Russ.)
- Mamieva I.A., Razin A.D. (2014). Parametrical architecture in Moscow. Architecture and construction of Russia, (6), 25-29. https://elibrary.ru/download/elibrary_ 21614483_18612954.pdf (In Russ.)
- Mamieva I.A. (2011). O klassifikacii analiticheskih poverhnostej [On classification of analytical surfaces]. International Scientific-and-Practical Conference “Engineering System - 2011”, Moscow, 63-65. (In Russ.)
- Krasic S. (2012). Geometrijske Površi u Arhitekturi. Gradevinsko-arhitektonski Fakultet, Univerzitet u Nišu, 238.
- Krivoshapko S.N. (2019). Optimal shells of revolution and main optimizations. Structural Mechanics of Engineering Constructions and Buildings, 15(3), 201-209. http:// dx.doi.org/ 10.22363/1815-5235-2019-15-3-201-209
- Mamieva I.A., Razin A.D. (2017). Landmark spatial structures in the form of conic surfaces. Industrial and Civil Engineering, (10), 5-11. (In Russ.)
- Krivoshapko S.N. (2002). Static, vibration, and buckling analyses and applications to one-sheet hyperboloidal shells of revolution. Applied Mechanics Reviews, 55(3), 241-270.
- Maan Jawad H. (2004). Design of Plate & Shell Structures. ASME Press, 476.
- Lewis M., Ove Arup. (1973). Roof cladding of the Sydney Opera. House Journal and Proceedings of the Royal Society of New South Wales, 106(1-2), 18-32.
- Brecher K. (2013). Mathematics, Art and Science of the Pseudosphere. Proceedings of Bridges 2013: Mathematics, Music, Art, Architecture, Culture, 469-472.
- Krivoshapko S.N., Ivanov V.N. (2018). Pseudospherical shells in building industry. Building and Reconstruction, 2(76), 32-40.
- Krivoshapko S.N. (2017). On application of parabolic shells of revolution in civil engineering in 2000-2017. Structural Mechanics of Engineering Constructions and Buildings, (4), 4-14. http://dx.doi.org/10.22363/1815-5235-20174-4-14
- Krivoshapko S.N., Ivanov V.N. (2018). Catenoidal shells. Industrial and Civil Engineering, (12), 7-13.
- Horta-Rangel J., Uehara-Guerrero H., Lopez-Lara T., Perez-Rea L., Hernandez-Zaragoza J. and Rojas-Gonzalez E. (2014). Optimal design of a fabric shell using a coupled femoptimization procedure. Asian Journal of Science and Technology, 5(11), 722-726.
- Rippmann M. (2016, February). Funicular Shell Design: geometric approaches to form finding and fabrication of discrete funicular structures. (Doctoral Thesis, ETH Zürich). 308. doi: 10.3929/ethz-a-010656780
- Rippmann M., Block Ph. (2013). Funicular shell design exploration. ACADIA 13: Adaptive Architecture: Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA), Cambridge, 24-26 October, 337-346.
- Krivoshapko S.N., Gil-oulbe M. (2013). Geometry and Strength of a Shell of Velaroidal Type on Annulus Plan with Two Families of Sinusoids. International Journal of Soft Computing and Engineering (IJSCE), 3(3), 71-73.
- Gogoberidze Ya.A. (1950). Covers “Darbazi”. Tbilisi: Tehnika da shroma Publ., 278.
- Mamieva I.A. (2019). Influence of the geometrical researches of ruled surfaces on design of unique structures. Structural Mechanics of Engineering Constructions and Buildings, 15(4), 299-307.
- Mihailov B.K., Guriyanov K.V. (1983). Stress state of shells of revolution (reviews of works devoted to linear theory of shells of revolution during the last 10 years). Leningrad: LISI, 28.
- Mazurkiewicz Z.E., Nagorski R.R. (1990). Shells of revolution. Amsterdam, Elsevier Science Publishers, 640.
- Zingoni Alphose. (2017). Shell Structures in Civil and Mechanical Engineering: Theory and Analysis. 2nd ed. Thomas Telford Limited, 438.
Дополнительные файлы


