Vizualizing of semi-regular polyhedrons in AutoCAD environment

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

The paper examines the automated formation by the kinematic method of the surfaces of Archimedes' semi-regular polyhedra of three forms: truncated tetrahedron, truncated octahedron and truncated icosahedron. To solve this problem, AutoCAD and the built-in programming language AutoLISP were used. Each of these five semi-regular polyhedra of Archimedes has faces of two kinds. In this regard, the surface of a separate polyhedron is considered to consist of two structural forms. Each structural shape is formed in the AutoCAD environment from the compartments of the surfaces of the faces of the polyhedron of the same type, and each compartment is assigned to a specific layer of the drawing. The formation of constructive forms is provided by user-defined functions developed in the functional programming language AutoLISP. User-defined functions not only form images of surfaces, but also perform all the necessary calculations. The electronic model of each polyhedron is formed by the union of its structural forms. A block is formed from it. The surface formation of each polyhedron performs user-defined functions that provide “freezing” of drawing layers intended for surface compartments, insertion of a block with an electronic model of the polyhedron, and sequential “defrosting” of drawing layers. When there is a “thawing" of the layers of the drawing, the process of forming a polyhedron is shown on the monitor screen. As a result of research software that includes userdefined functions for the formation of an electronic model of selected polyhedrons and visualization of the process of formation of their surfaces in a dynamic mode was created.

Авторлар туралы

Viktoryna Romanova

Peoples’ Friendship University of Russia (RUDN University)

Хат алмасуға жауапты Автор.
Email: v.a.r-victoryna@mail.ru

Associate Professor of Department of Civil Engineering, Academy of Engineering

6 Miklukho-Maklaya St., Moscow, 117198, Russian Federation

Әдебиет тізімі

  1. Alexandrov A.D. (2005). Convex polyhedra. Berlin, Springer. https://www.springer.com/us/book/9783540231585
  2. Koroyev Yu.I. (2015). Nachertatel'naya geometriya [Drawing Geometry]. Moscow, KnoRus Publ. (In Russ.)
  3. Ashkinuz V.G. (1957). O chisle polupravil'nyh mnogogrannikov [On the Number of Semi-Control Polyhedra]. Mathematical Education, 2(1), 107–118. (In Russ.)
  4. Savchenko V. (1979). Polupravil'nye mnogogranniki [Semi-controlled polyhedral]. Quant, (1), 3. (In Russ.)
  5. Smirnova I.M., Smirnov V.A. (2010). Pravil'nye, polupravil'nye i zvezdchatye mnogogranniki [Correct, SemiControl and Star Polyhedra]. Moscow, MCNMO Publ. (In Russ.)
  6. Shchetnikov A.I. (2007). Luka Pacholi i ego traktat “O bozhestvennoj proporcii” [Luca Pacholi and his “On Divine Proportion”. Mathematical Education, 1(41), 33–44. (In Russ.)
  7. Vasilyeva V.N. (2019). Gold section and gold polygons in the construction of icosahedron, dodecahedron and bodies of Archimedes based on them. Geometry and graphics, 8(2), 47–55. DOI: 1012737/article_5d2c1ceb9f91b1.21353054. (In Russ.)
  8. Alsina K. (2014). Tysyacha granej geometricheskoj krasoty. Mnogogranniki [Thousand facets of geometric beauty. Polyhedra]. Moscow, DeAgostini Publ. (In Russ.)
  9. Motulsky R.S. (2007). Nacional'naya biblioteka Belarusi: novoe zdanie – novaya koncepciya razvitiya [National Library of Belarus: New Building – New Development Concept]. Minsk. (In Russ.)
  10. Shishova A.B. (2015). Polupravil'nye mnogogranniki [Semi-controlled polyhedral]. Concept, (25), 191–195. http://e-koncept.ru/2015/65341.htm. (In Russ.)
  11. Ertskina E.B., Korolkova N.N. (2016). Geometric Modeling in Automated Design of Architectural Objects. Geometry and Graphic, 4(2), 48–54. doi: 10.12737/19833. (In Russ.)
  12. Schroeder W., Martin K., Lorensen B. (2003). The Visualization Toolkit. Kitware, Inc.
  13. Haber R.B. (1990). Vizualization Techniques for Engineering Mechanics. Computing Systems in Engineering, 1(1), 37–50.
  14. Mihai Dupac, Claudiu-Ionut Popirlan. (2010, April 1). Web Technologies for Modelling and Visualization in Mechanical Engineering. doi: 10.5772/9037
  15. Gallagher R.S. (1994). Computer Visualization: Graphics Techniques for Engineering and Scientific Analysis. CRC Press, Solomon Press.
  16. Caha J., Vondráková A. (2017). Fuzzy Surface Visualization Using HSL Colour Model. Electronic Journal, 2(2), 26–42.
  17. Ivanov V.N., Krivoshapko S.N., Romanova V.A. (2017). Bases of development and visualization of objects of analytical surfaces and the prospect of their use in architecture and construction. Geometry and graphics, 5(4), 3–14. (In Russ.)
  18. Heifetz A.L., Loginovsky A.N., Butorina I.V., Vasilyev V.N. Vasil'eva V.N. (2015). Inzhenernaya 3D-komp'yuternaya grafika: uchebnik i praktikum dlya akademicheskogo bakalavriata [Engineering 3D computer graphics: textbook and workshop for academic baccalaureate]. Мoscow, YuRAYT Publ. (In Russ.)
  19. Ivanov V.N., Romanova V.A. (2016). Konstrukcionnye formy prostranstvennyh konstrukcij. Vizualizaciya poverhnostej v sistemah MathCad, AutoCad [Constructive forms of space constructions. Visualization of the surfaces at systems MathCAD, AutoCAD]. Moscow, ASV Publ. (In Russ.)
  20. Kukharchuk A.I., Romanova V.A. (2014). Visualization of the Solution of Graphic Problems. RUDN Journal of Engineering Researches, (1), 23–28. (In Russ.)
  21. Romanova V.A. (2014). Visualization of surface formation of umbrella type. Structural Mechanics of Engineering Constructions and Buildings, (3), 19–22. (In Russ.)
  22. Romanova V.A. (2016). Generation of cyclic surfaces with generating circle of variable radius in AUTOCADE. Structural Mechanics of Engineering Constructions and Buildings, (3), 20–24. (In Russ.)
  23. Romanova V.A. (2012). Features of the image of the process of surface formation in the AutoCAD system. Structural Mechanics of Engineering Constructions and Buildings, (4), 3–5. (In Russ.)
  24. Romanova V.A. (2019). Formation of Monja surfaces by kinematic way in the environment AutoCAD. Structural Mechanics of Engineering Constructions and Buildings, 15(2), 106–116. http://dx.doi.org/10.22363/18155235-2019-15-2-106-116. (In Russ.)
  25. Romanova V.A., Rynkovskaya M., Ivanov V. (2019). Automatic Modeling of Surfaces with Identical Slopes. Advanced Structured Materials, 92, 143–156. https://doi.org/ 10.1007/978-3-319-79005-3_10
  26. Romanova V.A. (2019). Visualization of regular polyhedrons in the process of their formation. Geometry and graphics, 7(1), 55–67. doi: 10.12737/article 5c91ff d0916d52/90296375. (In Russ.)

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».