Современная трактовка принципа и полуобратного метода Сен-Венана
- Авторы: Зверяев Е.М.1,2
-
Учреждения:
- Институт прикладной математики имени М.В. Келдыша РАН
- Московский авиационный институт
- Выпуск: Том 16, № 5 (2020)
- Страницы: 390-413
- Раздел: Теория упругости
- URL: https://journal-vniispk.ru/1815-5235/article/view/325633
- DOI: https://doi.org/10.22363/1815-5235-2020-16-5-390-413
- ID: 325633
Цитировать
Полный текст
Аннотация
Актуальность. Постепенное развитие взглядов на сформулированные Сен-Венаном принципы и методы, лежащие в основе механики деформируемого тела, рост той ветви математического анализа, которая применяется при вычислениях, и накопление практических правил, получаемых путем истолкования математических результатов, приводят к тому, что существующие принципы заменяются новыми, более общими, число их уменьшается и данная область приводится во все более тесную связь с другими отделами науки и техники. Большинство дифференциальных уравнений механики обладает решениями, в которых наблюдаются разрывы, быстрые переходы, неоднородности или другие неправильности, возникающие из приближенного описания. Большой интерес представляет обобщенная формулировка принципа Сен-Венана для затухания заданных на малом участке перемещений для объяснения полученных приближенных решений. С другой стороны, необходимо построение решений уравнений с сохранением порядка дифференциального уравнения в сочетании с выполнением всех граничных условий. Таким образом, были определены следующие цели исследования : 1) дополнить известный принцип Сен-Венана для случая заданных на малом участке тела перемещений; 2) построить на основе полуобратного метода модернизированный метод, дополняющий полученные классическим полуобратным методом решения быстро меняющимися затухающими решениями; 3) обосновать асимптотическую сходимость решений и уточнить классические теории для более полного понимания самой классической теории. Для достижения поставленных целей использовались такие методы , как: 1) строгое математическое выделение затухающей и незатухающей компонент решения из уравнений плоской задачи теории упругости методами теории функций комплексного переменного; 2) построение асимптотического решения без каких-либо гипотез и выполнение всех граничных условий; 3) оценка сходимости решения. Результаты. Предложена формулировка обобщенного принципа Сен-Венана для заданных на малом участке тела перемещений. Найден метод построения асимптотических аналитических решений уравнений теории упругости, позволяющий выполнить все граничные условия.
Ключевые слова
Об авторах
Евгений Михайлович Зверяев
Институт прикладной математики имени М.В. Келдыша РАН; Московский авиационный институт
Автор, ответственный за переписку.
Email: zveriaev@mail.ru
доктор технических наук, профессор, ведущий научный сотрудник Института прикладной математики имени М.В. Келдыша РАН, профессор Московского авиационного института
Российская Федерация, 125047, Москва, Миусская пл., 4; Российская Федерация, 125993, Москва, Волоколамское шоссе, 4Список литературы
- Saint-Venant A.J.C.B. Memoire sur la Torsion des Prismes. Mem. Divers Savants. 1855;14:233-560.
- Mises R. On Saint-Venant's Principle. Bull. AMS. 1945;51:555-562.
- Friedrichs K.O., Dressler R.F. A boundary layer theory for elastic bending of plates. Comm. Pure Appl. Math. 1961;14:1-33. https://doi.org/10.1002/cpa.3160140102
- Goldenveiser A.L., Kolos A.V. K postroeniyu dvumernykh uravnenii teorii uprugikh tonkikh plastinok [On the derivation of two-dimensional equations in the theory of thin elastic plates]. Journal of Applied Mathematics and Mechanics. 1965;29(1):141-155.
- Gregory R.D., Wan F.Y.M. Decaying states of plane strain in a semi-infinite strip and boundary conditions for plate theory. J. Elasticity. 1984;14:27-64. https://doi.org/10.1007/BF00041081
- Horgan C.O., Knowles J.K. Recent developments concerning Saint-Venant's principle. Advances in Applied Mechanics. 1983;23:179-269. doi: 10.1016/S0065-2156(08)70244-8.
- Horgan C.O. Recent developments concerning Saint-Venant's principle: an update. Applied Mech. Reviews. 1989;42:295-303.
- Horgan C.O. Recent developments concerning Saint-Venant's principle: a second update. Applied Mech. Reviews. 1996;49:101-111.
- Horgan C.O., Simmonds J.G. Saint-Venant end effects in composite structures. Composites Engineering. 1994;4(3):279-286. https://doi.org/10.1016/0961-9526(94)90078-7
- De Pascalis R., Destrade M., Saccomandi G. The stress field in a pulled cork and some subtle points in the semi-inverse method of nonlinear elasticity. Proc. R. Soc. Ser. A. Math., Phys., Engng. Sci., 2007; 463: 2945-2959. URL: https://doi.org/10.1098/rspa.2007.0010
- De Pascalis R., Rajagopal K.R., Saccomandi G. Remarks on the use and misuse of the semi-inverse method in the nonlinear theory of elasticity. Quart. J. Mech. Appl. Math. 2009;62(4):451-464. https://doi.org/10.1093/qjmam/hbp019
- Bulgariu E. On the Saint-Venant’s problem in microstretch elasticity. Libertas Mathematica. 2011;31:147-162.
- Chiriеta S. Saint-Venant’s problem and semi-inverse solutions in linear viscoelasticity. Acta Mechanica. 1992;94:221-232. https://doi.org/10.1007/BF01176651
- Placidi L. Semi-inverse method а la Saint-Venant for two-dimensional linear isotropic homogeneous second-gradient elasticity. Math. Mech. Solids. 2015;22(5):919-937. https://doi.org/10.1177/1081286515616043
- Zveryaev E.M. Interpretation of Semi-Invers Saint-Venant Method as Iteration Asymptotic Method. In: Pietraszkiewicz W., Szymczak C. (eds.) Shell Structures: Theory and Application. London: Taylor & Francis Group; 2006. p. 191-198.
- Zveryayev Ye.M. Analysis of the hypotheses used when constructing the theory of beam and plates. Journal of Applied Mathematics and Mechanics. 2003;67(3):425-434.
- Zveryayev Ye.M., Makarov G.I. A general method for constructing Timoshenko-type theories. Journal of Applied Mathematics and Mechanics. 2008;72(2):197-207. Available from: https://www.elibrary.ru/item.asp?id=10332626 (accessed: 10.07.2020).
- Zveryayev E.M., Olekhova L.V. Reduction 3D equations of composite plate to 2D equations on base of mapping contraction principle. KIAM Preprint No. 95. Moscow; 2014. (In Russ.) Available from: http://library. keldysh.ru/preprint.asp?id=2014-95 (accessed: 10.07.2020).
- Zveryaev E.M. Saint-Venant - Picard - Banach Method for Integrating Thin-Walled System Equations of the Theory of Elasticity. Mechanics of Solids. 2020;55(7):124-132. (In Russ.) doi: 10.1134/S0032823519050126.
- Granas A. Fixed point theory. New York: Springer-Verlag; 2003.
- Greenberg G.A. O metode, predlozhennom P.F. Papkovichem dlya resheniya ploskoi zadachi teorii uprugosti dlya pryamougol'noi oblasti i zadachi izgiba pryamougol'noi tonkoi plity s dvumya zakreplennymi kromkami, i o nekotorykh ego obobshcheniyakh [On the method proposed P.F. Papkovich for solutions theory of elasticity plan problem for the rectangular area, and the bending problem for rectangular thin plate with two fixed edges, and some of its generalizations]. Journal of Applied Mathematics and Mechanic. 1953;17(2):211-228. (In Russ.)
Дополнительные файлы


