РАСЧЕТНОЕ ОБОСНОВАНИЕ ЗАДАННОГО УРОВНЯ СЕЙСМОСТОЙКОСТИ

Обложка

Цитировать

Полный текст

Аннотация

В настоящий момент, сейсмостойкое проектирование зданий и сооружений основано на силовом расчете. Эффект землетрясения представляется эквивалентными статическими силами. Эти силы рассчитываются с помощью упругих спектров реакций, связывающих абсолютное ускорение сооружения с законом движения грунта (линейноспектральный метод). Этот метод не может непосредственно учесть ни влияния длительности сильных землетрясений, ни нелинейного поведения конструкций. Энергия, поступившая в сооружение и вызывающая повреждение его элементов, напрямую зависит от продолжительности и частотного состава колебаний грунта. Входная энергия непосредственно зависит от рассматриваемой модели сооружения. Она может быть определена как на основе теоретических оценок, так и в результате динамического анализа выбранной модели. В результате входная энергия сравнивается с максимальной энергией, которую может воспринять сооружение до его разрушения, т.е. с энергоемкостью. Как правило, сравнению подлежит неупругая часть входной энергии (поглощенной сооружением). В этом заключается идея энергетического метода сейсмостойкого проектирования. В настоящей работе рассматривается методика расчетного обоснования сейсмостойкости сооружений при помощи нелинейного статического анализа, который основан на энергетическом подходе. Произведены расчеты трехэтажной стальной рамы нелинейным статическим и нелинейным динамическим методами. Приведен сравнительный анализ этих методов, показана значимость высших форм колебаний и необходимость анализа их влияния на реакцию системы

Об авторах

ГУРАМ АВТАНДИЛОВИЧ ДЖИНЧВЕЛАШВИЛИ

Российский университет транспорта, Москва, Россия

Автор, ответственный за переписку.
Email: guram2004@yandex.ru

доктор технических наук, профессор, заведующий кафедрой высшей математики и естественных наук, Российский университет транспорта (МИИТ)

Россия 127994, Москва, ул. Образцова, д. 9, стр. 9

СЕРГЕЙ ВАЛЕРЬЕВИЧ БУЛУШЕВ

Национальный исследовательский Московский государственный строительный университет, Москва, Россия

Email: sergey.bulushev@gmail.com

инженер, Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ).

Россия 129337, Москва, Ярославское шоссе, д. 26

Список литературы

  1. Mkrtychev, O.V., Dzhinchvelashvili, G.A. (2012). Accounting Problems of Nonlinear Seismic Stability in the Theory (Hypothesis and Errors). Moscow: MGSU publ. 192. (In Russ.).
  2. Sosnin, A.V. (2016). On the peculiarities of the methodology of nonlinear static analysis and its consistency with the basic normative methodology for calculating buildings and structures for the action of seismic forces. Bulletin of the South Ural University. Ser. Construction Engineering and Architecture, 16(1), 12—19. (In Russ.).
  3. Dzhinchvelashvili, G.A., Bulushev, S.V., Kolesnikov, A.V. (2016). Nonlinear static method of analysis of seismic resistance of buildings and structures. Sejsmostojkoe stroitel'stvo. Bezopasnost' sooruzhenij. (5), 39—47. (In Russ.).
  4. Dzhinchvelashvili, G.A., Bulushev, S.V. (2017). Accuracy evaluation of the nonlinear static analysis method of the structures seismic resistance. Structural Mechanics of Engineering Constructions and Buildings, (2), 41—48. (In Russ.).
  5. Dzhinchvelashvili, G.A. (2015). Nonlinear Dynamic Methods of Calculation of Buildings and Structures with a Given Security Seismic Stability: Ph.D. in Tehnical Technical science Thesis. Moscow. 46. (In Russ.).
  6. Zadojan, P.M. (2009). Estimation of seismic stability by the spectrum load capacity. Izvestija Erevanskogo gosudarstvennogo universiteta arhitektury i stroitel'stva, (2). (In Russ.).
  7. Mkrtychev, O.V., Dzhinchvelashvili, G.A., Dzerzhinskij, R.I. (2016). The philosophy of multi-level design in light of the provision of seismic stability of buildings. Geologija i Geofizika Juga Rossii, (1), 71—81. (In Russ.).
  8. Mkrtychev, O.V., Dzhinchvelashvili, G.A. (2012). Assessment of buildings and structures be-yond the elastic limit at the seismic influences. XXI Russian-Slovak-Polish Seminar, “Theoretical Foun-dation of Civil Engineering”, Moscow-Archangelsk 03.07 – 06.07.2012, 177—186. (In Russ.).
  9. Nemchinov, Ju.I., Mar'enkov, N.G., Havkin, A.K., Babik, K.N. (2012). Designing Buildings with a Given Level of Seismic Resistance (taking into account the recommendations of EUROCODE 8, int. standards and DBN requirements): Monograph. Kiev: Minregion Ukrainy, GP NIISK. 53. (In Russ.).
  10. Chopra, A.K., Goel, R.K. (2000). Capacity-demand diagram methods based on inelastic design spectrum. Proc. of 12th World Conference on Earthquake Engineering, Auckland, New Zealand, paper № 1612.
  11. Chopra, A.K., Goel, R.K. (2002). A modal pushover analysis procedure for estimating seismic demands for buildings. Earthquake Engineering And Structural Dynamics. Earthquake Engin. Struct. Dyn., 2002, (31), 561–582. doi: 10.1002/eqe.144.
  12. Clough, R.W., Penzien, J. (1995). Dynamics of Structures (Third Edition). Computers & Struc-tures, Inc. 1995 University Ave., Berkeley, CA 94704, USA, 752 p.
  13. Datta, T.K. (2010). Seismic Analysis of Structures, John Wiley & Sons (Asia), p. 464.
  14. Fajfar, P., Krawinkler, H. (2004), Performance-Based Seismic Design Concepts and Imple-mentation. Proceedings of the International Workshop Bled, Slovenia, June 28 — July 1, 2004. PEER Report 2004/05, College of Engineering, University of California, Berkeley.
  15. Gupta, B. (1998). Enhanced pushover procedure and inelastic demand estimation for perfor-mance-based seismic evaluation of buildings: PhD. Diss. Orlando, Florida, Univ. of Central Florida.
  16. Mkrtychev, O.V., Dzhinchvelashvili, G.A., Busalova, M.S. (2014). Calculation accelerograms parameters for a ”Construction-Basis” model, nonlinear properties of the soil taken into account. Procedia Engineering, (91), 54—57. (In Russ.).
  17. Paz, M.; Mario Paz, William Leigh, eds. (2004). Structural Dynamics: Theory and Computa-tion., 5th ed. 844.
  18. Themelis, S. (2008). Pushover Analysis for Seismic Assessment and Design of Structures, Her-iot-Watt University, School of Built Environment.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».