Effect of stress concentration in a beam of rectangular cross section in the region of attachment of the longitudinal efforts

封面

如何引用文章

全文:

详细

Relevance. To ensure the safe operation of buildings and structures, it is necessary to more accurately determine the stress-strain state (SSS) of structural elements, to identify areas of stress concentration. The distribution of stresses in the region of the fastening bars in three-dimensional formulation is relatively little studied. In these areas, there may be significant stress concentrations that contribute to the occurrence and development of cracks and splits, which are a harbinger of destruction. The development of modern methods of calculation, software systems and the growth of computing capabilities allow refining the design scheme: to move from one-dimensional to two-dimensional calculation scheme, from two-dimensional to three-dimensional calculation scheme. All this makes it possible to more accurately assess the SSS of structural elements and structures, to identify areas of stress concentration, as well as to investigate the effect of the Poisson's ratio on the stress concentration. Methods of research. It is noted that cracks and breaks in the edges under the influence of longitudinal loads occur in the rods (racks) of square cross-section. Three-dimensional elements based on the spline version of the finite element method and the LIRA computational complex are used to estimate the stress-strain state. The spline finite element method, thanks to the synthesis of the idea of parametrization and the finite element method (FEM) with cubic approximation of all three required variables within each element, allows obtaining consistent three-dimensional finite elements. On the basis of the mentioned methods and complexes, numerical studies of the stress concentration in the bars of square and rectangular cross-sections fixed at one end and perceiving the tensile forces at the other end are performed. Conclusions. It is found that in the angular points of the cross section in the area of fastening of straight bars, perceiving axial tensile forces, there are stress concentrations. Away from the mounting area of the bar, the voltages are aligned. By increasing the Poisson's ratio, the stress concentration increases faster than at low values. The transition from a onedimensional design model to a two-dimensional one, and even more so to a three-dimensional model allows to determine the stress concentration, both in plan and in thickness. Information about the concentration of stresses in elements of structures will allow designers to more accurately design structures and facilities, and the operators to promptly identify the defective region.

作者简介

Samat Yakupov

Kazan Scientific Center of the Russian Academy of Sciences; Kazan State University of Architecture and Engineering (KSUAE)

编辑信件的主要联系方式.
Email: tamas_86@mail.ru

Cand. Sci. (Eng.), senior researcher, Institute of Mechanics and Engineering

2/31 Lobachevsky St., PO Box 261, Kazan, Tatarstan, 420111, Russian Federation; 1 Zelenaya St., Kazan, Tatarstan, 420043, Russian Federation

Hakim Kiyamov

Kazan Scientific Center of the Russian Academy of Sciences

Email: tamas_86@mail.ru

Cand. Sci. (Eng.), senior researcher, Institute of Mechanics and Engineering

2/31 Lobachevsky St., PO Box 261, Kazan, Tatarstan, 420111, Russian Federation

Nukh Yakupov

Kazan Scientific Center of the Russian Academy of Sciences

Email: yzsrr@kfti.knc.ru

Dr Sci. (Eng.), leading researcher, Institute of Mechanics and Engineering

2/31 Lobachevsky St., PO Box 261, Kazan, Tatarstan, 420111, Russian Federation

Leisan Khasanova

Kazan State University of Architecture and Engineering (KSUAE)

Email: leisanka15@mail.ru

master

1 Zelenaya St., Kazan, Tatarstan, 420043, Russian Federation

Ilnar Bikmukhammetov

Kazan State University of Architecture and Engineering (KSUAE)

Email: ilnar_27@mail.ru

master

1 Zelenaya St., Kazan, Tatarstan, 420043, Russian Federation

参考

  1. Neuber H. (1946). Theory of Notch Stress. Ann Arbor, Mich., J.W. Edwards, 204.
  2. Peterson R.E. (1974). Stress Concentration Factors. New York, J. Wiley & Sons.
  3. Collins J.A. (1981). Failure of Materials in Mechanical Design. Analysis, Prediction, Prevention. The Ohio State University; New York, J. Wiley & Sons.
  4. Yakupov N.M. (2010). Mechanics: problem – idea – practice. Kazan, Kazan State University Publ., 161. (In Russ.)
  5. Kantyukov R.A., Tameev I.M., Yakupov N.М., Abdushev А.А., Yakupov S.N. (2011). Local “treating” overlays-coatings. Territorija Neftegas, 1(18), 68–71.
  6. Yakupov N.M., Rizaeva A., Khusnutdinov A.E., Mojaddidi A.S. (2015). Concentration of stresses in the stretched rod in the region of the seal. Proceedings of VIII International Scientific-Practical Conference “Engineering systems – 2015”. Moscow, RUDN Publ., 69–73. (In Russ.)
  7. Shardakov I.N., Kosheleva N.A., Serovaev G.S., Shestakov A.P., Shipunov G.S. (2018). The stress-strain state analysis and structural evaluation of PCM construction consisting of heterogeneous element. International Journal of Mechanical Engineering and Technology (IJMET), 9(10), 1157–1171.
  8. Gunakala S.R., Comissiong D.M.G., Jordan К., Sankar A. (2012). A Finite Element Solution of the Beam Equation via MATLAB. International Journal of Applied Science and Technology, 2(8), 80–88.
  9. Sidorenko S.N., Yakupov N.M. (2002). Corrosion is an ally of accidents and catastrophes. 93.
  10. Nizamov H.N., Sidorenko S.N., Yakupov N.M. (2006). Forecasting and prevention of corrosion destruction of structures. 355.
  11. Yakupov N.M., Giniyatullin R.R., Yakupov S.N. (2012). The effect of deformation of the surface structure elements on the corrosion wear. Strength problems, 2, 76–84.
  12. Yakupov N.M., Giniyatullin R.R., Yakupov S.N. (2012). The influence of the character of deformation of structural element surfaces on the corrosive wear. Strength of materials, 170–176.
  13. Meneghetti G., Guzzella C. (2014). The peak stress method to estimate the mode I notch stress intensity factor in welded joints using three-dimensional finite element models. Engineering Fracture Mechanics, 115, 154–171.
  14. You F.X. (2011). The Spline Finite Element Method for the Analysis of the Dynamic Response of Composite Material Plate. Advanced Materials Research, 168–170, 1837–1845.
  15. Yakupov N.M., Kiyamov H.G., Yakupov S.N., Kiyamov I.Kh. (2011). Modeling of structural elements of complex geometry by three-dimensional finite elements. Mechanics of composite materials and structures, (1), 145–154. (In Russ.)
  16. Lim T.C. (2013). Stress Concentration Factors in Auxetic Rods and Plates. Applied Mechanics and Materials, 394, 134–139.

补充文件

附件文件
动作
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».