Эффект концентрации напряжений в стержне прямоугольного сечения в области крепления от продольных усилий

Обложка

Цитировать

Полный текст

Аннотация

Актуальность. Для обеспечения безопасной работы конструкций и сооружений необходимо точнее определять напряженно-деформированное состояние (НДС) элементов конструкций, выявлять области концентрации напряжений. Вопросы распределения напряжений в областях крепления стержней в трехмерной постановке относительно мало изучены. В этих областях могут возникнуть существенные концентрации напряжений, способствующие возникновению и развитию трещин и отколов, являющихся предвестником разрушения. Развитие современных методов расчета, программных комплексов и рост возможностей вычислительной техники позволяют уточнять расчетные схемы: переходить от одномерной схемы расчета к двумерной, от двумерной схемы расчета к трехмерной. Все это дает возможность более точно оценивать НДС элементов конструкций и сооружений, выявлять области концентрации напряжений, а также исследовать влияние коэффициента Пуассона на концентрацию напряжений. Методы исследования. Отмечено, что в стержнях (стойках) квадратного сечения возникают трещины и разрывы в кромках при воздействии продольных нагрузок. Для оценки напряженно-деформированного состояния используются трехмерные элементы на базе сплайнового варианта метода конечных элементов и расчетный комплекс «ЛИРА». Сплайновый метод конечных элементов, благодаря синтезу идеи параметризации и метода конечных элементов (МКЭ) с кубической аппроксимацией всех трех искомых переменных в пределах каждого элемента, позволяет получать согласованные трехмерные конечные элементы. На базе отмеченных методов и комплексов выполнены численные исследования концентрации напряжений в стержнях квадратного и прямоугольного сечений, закрепленных на одном конце и воспринимающих растягивающие усилия на другом конце. Выводы. Установлено, что в угловых точках сечения в области крепления прямолинейных стержней, воспринимающих осевые растягивающие усилия, возникают концентрации напряжений. Вдали от области крепления стержня напряжения выравниваются. С увеличением коэффициента Пуассона концентрация напряжений возрастает быстрее, чем при малых значениях. Переход от одномерной расчетной схемы к двумерной и тем более к трехмерной схеме позволяет определять концентрацию напряжений как в плане, так и по толщине. Информация о концентрации напряжений в элементах конструкций позволит проектировщикам более грамотно проектировать конструкции и сооружения, а эксплуатационникам своевременно выявлять дефектные области.

Об авторах

Самат Нухович Якупов

Федеральный исследовательский центр “Казанский научный центр Российской академии наук”; Казанский государственный архитектурно-строительный университет

Автор, ответственный за переписку.
Email: tamas_86@mail.ru

кандидат технических наук, старший научный сотрудник

Российская Федерация, 420111, Татарстан, Казань, ул. Лобачевского, 2/31; Российская Федерация, 420043, Татарстан, Казань, ул. Зеленая, 1

Хаким Габдрахманович Киямов

Федеральный исследовательский центр “Казанский научный центр Российской академии наук”

Email: tamas_86@mail.ru

кандидат технических наук, старший научный сотрудник, Институт механики и машиностроения

Российская Федерация, 420111, Татарстан, Казань, ул. Лобачевского, 2/31

Нух Махмудович Якупов

Федеральный исследовательский центр “Казанский научный центр Российской академии наук”

Email: yzsrr@kfti.knc.ru

доктор технических наук, ведущий научный сотрудник, Институт механики и машиностроения

Российская Федерация, 420111, Татарстан, Казань, ул. Лобачевского, 2/31

Лейсан Ильнуровна Хасанова

Казанский государственный архитектурно-строительный университет

Email: leisanka15@mail.ru

магистр

Российская Федерация, 420043, Татарстан, Казань, ул. Зеленая, 1

Ильнар Ильдарович Бикмухамметов

Казанский государственный архитектурно-строительный университет

Email: ilnar_27@mail.ru

магистр

Российская Федерация, 420043, Татарстан, Казань, ул. Зеленая, 1

Список литературы

  1. Neuber H. (1946). Theory of Notch Stress. Ann Arbor, Mich., J.W. Edwards, 204.
  2. Peterson R.E. (1974). Stress Concentration Factors. New York, J. Wiley & Sons.
  3. Collins J.A. (1981). Failure of Materials in Mechanical Design. Analysis, Prediction, Prevention. The Ohio State University; New York, J. Wiley & Sons.
  4. Yakupov N.M. (2010). Mechanics: problem – idea – practice. Kazan, Kazan State University Publ., 161. (In Russ.)
  5. Kantyukov R.A., Tameev I.M., Yakupov N.М., Abdushev А.А., Yakupov S.N. (2011). Local “treating” overlays-coatings. Territorija Neftegas, 1(18), 68–71.
  6. Yakupov N.M., Rizaeva A., Khusnutdinov A.E., Mojaddidi A.S. (2015). Concentration of stresses in the stretched rod in the region of the seal. Proceedings of VIII International Scientific-Practical Conference “Engineering systems – 2015”. Moscow, RUDN Publ., 69–73. (In Russ.)
  7. Shardakov I.N., Kosheleva N.A., Serovaev G.S., Shestakov A.P., Shipunov G.S. (2018). The stress-strain state analysis and structural evaluation of PCM construction consisting of heterogeneous element. International Journal of Mechanical Engineering and Technology (IJMET), 9(10), 1157–1171.
  8. Gunakala S.R., Comissiong D.M.G., Jordan К., Sankar A. (2012). A Finite Element Solution of the Beam Equation via MATLAB. International Journal of Applied Science and Technology, 2(8), 80–88.
  9. Sidorenko S.N., Yakupov N.M. (2002). Corrosion is an ally of accidents and catastrophes. 93.
  10. Nizamov H.N., Sidorenko S.N., Yakupov N.M. (2006). Forecasting and prevention of corrosion destruction of structures. 355.
  11. Yakupov N.M., Giniyatullin R.R., Yakupov S.N. (2012). The effect of deformation of the surface structure elements on the corrosion wear. Strength problems, 2, 76–84.
  12. Yakupov N.M., Giniyatullin R.R., Yakupov S.N. (2012). The influence of the character of deformation of structural element surfaces on the corrosive wear. Strength of materials, 170–176.
  13. Meneghetti G., Guzzella C. (2014). The peak stress method to estimate the mode I notch stress intensity factor in welded joints using three-dimensional finite element models. Engineering Fracture Mechanics, 115, 154–171.
  14. You F.X. (2011). The Spline Finite Element Method for the Analysis of the Dynamic Response of Composite Material Plate. Advanced Materials Research, 168–170, 1837–1845.
  15. Yakupov N.M., Kiyamov H.G., Yakupov S.N., Kiyamov I.Kh. (2011). Modeling of structural elements of complex geometry by three-dimensional finite elements. Mechanics of composite materials and structures, (1), 145–154. (In Russ.)
  16. Lim T.C. (2013). Stress Concentration Factors in Auxetic Rods and Plates. Applied Mechanics and Materials, 394, 134–139.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».