Development of a recursive model for the calculation of transient processes in electric networks using the wavelet transformation

Cover Page

Cite item

Full Text

Abstract

The digital transformation of the electric power industry is one of the priority tasks for the development of the industry. Wavelet transform is widely used in the electric power industry to analyze the dynamics of complex non-linear non-stationary processes. The article proposes a method for calculating transient processes in electrical networks based on a recursive algorithm. The approximating and detailing wavelet coefficients of the discrete wavelet transform are used as the voltage signal. To select the optimal wavelet function, it is proposed to use a criterion that takes into account the accuracy of the signal recovery as a result of the inverse wavelet transform. The nature of the change in the calculation result with an increase in the number of iterations is shown. The results of a numerical experiment for a 110 kV network when calculating a three-phase short circuit showed an acceptable accuracy of the developed technique. The proposed technique makes it possible to compress the volume of transmitted digital data on normal and emergency modes of electrical networks.

About the authors

Nadezhda N. Dolgikh

Yugra State University

Author for correspondence.
Email: n_dolgikh@ugrasu.ru

Senior Lecturer of the Higher Engineering School

Russian Federation, Khanty-Mansiysk

Elena A. Dyuba

Yugra State University

Email: e_dyuba@ugrasu.ru

Senior Lecturer of the Higher Engineering School

Russian Federation, Khanty-Mansiysk

Dmitry S. Osipov

Yugra State University

Email: d_osipov@ugrasu.ru

Doctor of Technical Sciences, Professor, Head of the Higher Engineering School

Russian Federation, Khanty-Mansiysk

References

  1. Манусов, В. З. Применение теории вейвлетов для анализа данных при решении задачи прогнозирования электрической нагрузки / В. З. Манусов, К. Н. Бойко. – Текст : непосредственный // Научные проблемы транспорта Сибири и Дальнего Востока. – 2015. – № 4. – С. 212–215.
  2. Мисриханов, А. М. Применение методов вейвлет преобразования в электроэнергетике / А.М. Мисриханов. – Текст : непосредственный // Автоматика и телемеханика. – 2006. – № 5. – С. 5–23.
  3. Czarnecki, L. S. Power properties of four-wire systems at nonsinusoidal supply voltage / L. S. Czarnecki, P. M. Haley. – doi: 10.1109/tpwrd.2015.2463253 // IEEE Transactions on Power Delivery. – 2016. – Vol. 31, Iss. 2. – P. 513–521.
  4. Осипов, Д. С. Разработка критерия выбора оптимального типа материнского вейвлета в задаче расчета активной и реактивной мощности систем электроснабжения / Д. С. Осипов. – Текст : непосредственный // Омский научный вестник. – 2018. – № 6 (162). – С. 71–75.
  5. Hamid, E. Y. Wavelet-based data compression of power system disturbances using the minimum description length criterion / E. Y. Hamid, Z.-I. Kawasaki. – doi: 10.1109/61.997918 // IEEE Transactions on Power Delivery. – 2002. – Vol. 17, Iss. 2. – P. 460–466.
  6. Guo, M.-F. Wavelet-transform based early detection method for short-circuit faults in power distribution networks / M.-F. Guo, N.-C. Yang, L.-X. You. – doi: 10.1016/j.ijepes.2018.01.013 // International journal of electric power and energy systems. – 2018. – Vol. 99. – P. 706–721.
  7. High impedance fault detection in power distribution systems using wavelet transform and evolving neural network / S. Silva, M. Gouvera, A. Lacerda [et al.]. – doi: 10.1016/j.epsr.2017.08.039 // Electric power systems research. – 2018. – Vol. 154. – P. 474–483.
  8. Dwivedi, U. D. A Wavelet-based denoising technique for improved monitoring and characterization of power quality disturbances / U. D. Dwivedi, S. N. Singh. – doi: 10.1080/15325000902762281 // Electric Power Components and Systems. – 2009. – Vol.37, №.7. – P. 753–769.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Yugra State University

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».