Synthesis of new hybrid molecules based on 7-hydroxy-2,2,4-trimethylhydroquinoline derivatives

Cover Page

Cite item

Full Text

Abstract

Among the fused azaheterocycles, quinolines have long attracted the attention of chemists. First of all, this is due to their wide range of practically useful properties. Quinolines and their derivatives exhibit a wide range of biological activities, including antimalarial, anticancer, antiviral, antifungal and anti-infl ammatory activities. These compounds are also used as fl uorescent probes, luminescent labels, and in dye production. In the course of this work, a series of pyridocoumarin systems have been obtained, which have been tested as inhibitors of blood clotting factors Xa and XIa. The method for the synthesis of the proposed compounds involves the condensation of 7-hydroxy-2,2,4-trimethyl-1,2- dihydroquinolines and 7-hydroxy-2,2,4-trimethyl-1,2,3,4-tetrahydroquinolines with malononitrile and aryl(hetaryl)aldehydes. It has been found that as a result of this interaction, new 4H-pyrano[3,2-g]quinoline-3-carbonitriles are formed. In addition, new derivatives of 7-hydroxy-2,2,4- trimethyl-1,2,3,4-tetrahydroquinoline containing an aryl fragment in the 4-position have been obtained, which have been also used as starting compounds for the annelation reaction of the pyran ring. The pyridocoumarin systems obtained in the study have showed promising inhibitory activity against these coagulation factors, making them promising candidates for further study as potential anticoagulant drugs.

About the authors

Yana Aleksandrovna Gribanova

Voronezh State University

ORCID iD: 0009-0003-1704-6873
Universitetskaya sq., 1, Voronezh, Voronezh region, 394036

Andrey Yur'evich Potapov

Voronezh State University

ORCID iD: 0000-0001-8084-530X
Universitetskaya sq., 1, Voronezh, Voronezh region, 394036

Kristina Olegovna Karelina

Voronezh State University

ORCID iD: 0009-0003-7430-5966
Universitetskaya sq., 1, Voronezh, Voronezh region, 394036

Aleksei I. Slivkin

Voronezh State University

Universitetskaya sq., 1, Voronezh, Voronezh region, 394036

Khidmet S. Shikhaliev

Voronezh State University

Universitetskaya sq., 1, Voronezh, Voronezh region, 394036

Error Fedorovich Error

Voronezh State University

Universitetskaya sq., 1, Voronezh, Voronezh region, 394036

Error Borisovich Error

Воронежский государственный технический университет

ул. 20-летия Октября, 84

References

  1. Katritzky A. R., Rachwal S., Rachwal B. Recent progress in the synthesis of 1,2,3,4-tetrahydroquinolines // Tetrahedron. 1996. Vol. 52. P. 15031–15070. https://doi.org/10.1016/S0040-4020(96)00911-8
  2. Избранные методы синтеза и модификации гетероциклов / под ред. В. Г. Карцева. Т. 6. Хинолины: химия и биологическая активность. М. : МБФНП (ICSPF) Press, 2007. 744 с. (Серия InterBioScreen).
  3. Шмырева Ж. В. 2,2,4-Триметилгидрохинолины. Воронеж : Изд-во Воронеж. ун-та, 2000. 124 с.
  4. Meunier B. Hybrid molecules with a dual mode of action: Dream or reality? // Acc. Chem. Res. 2007. Vol. 41, № 1. P. 69–77. https://doi.org/10.1021/ar7000843
  5. Miles T. J., Hennessy A. J., Bax B., Brooks G., Brown B. S., Brown P., Cailleau N., Chen D., Dabbs S., Davies D. T., Esken J. M., Giordano I., Hoover J. L., Huang J., Jones G. E., Sukmar S. K., Spitzfaden C., Markwell R. E., Minthorn E. A., Rittenhouse S., Gwynn M. N., Pearson N. D. Novel tricyclics (e.g., GSK945237) as potent inhibitors of bacterial type IIA topoisomerases // Bioorg. Med. Chem. Lett. 2016. Vol. 26, № 10. P. 2464–2469. https://doi.org/10.1016/j.bmcl.2016.03.106
  6. Schrader K. K., Avolio F., Andolfi A., Cimmino A., Evidente A. Ungeremine and its hemisynthesized analogues as bactericides against Flavobacterium columnare // J. Agric. Food Chem. 2013. Vol. 61, № 6. P. 1179–1183. https://doi.org/10.1021/jf304586j
  7. Tsuji K., Tsubouchi H., Ishikawa H. Synthesis and antibacterial activities of optically active substituted 1,2-dihydro-6-oxo-6H-pyrrolo[3,2,1-ij]quinoline-5-carboxylic acids // Chem. Pharm.Bull. 1995. Vol. 43, № 10. P. 1678–1682. https://doi.org/10.1248/cpb.43.1678
  8. Ishikawa H., Miyamoto H., Ueda H., Tamaoka H., Tominaga M., Nakadawa K. Studies on antibacterial agents. II. Synthesis and antibacterial activities of substituted 1,2-dihydro-6-oxo-6H-pyrrolo[3,2,1-ij]quinoline-5-carboxylic acids // Chem. Pharm. Bull. 1990. Vol. 38, № 9. P. 2459–2462. https://doi.org/10.1248/cpb.38.2459
  9. Al-Said N. H., Shawakfeh K. Q., Abdullah W. N. Cyclization of free radicals at the C-7 position of ethyl indole–2-carboxylate derivatives: An entry to a new class of duocarmycin analogues // Molecules. 2005. № 10. P. 1446–1457. https://doi.org/10.3390/10121446
  10. Wong P. C., Quan M. L, Watson C. A., Crain E. J., Harpel M. R., Rendina A. R., Luettgen J. M., Wexler R. R., Schumacher W. A., Seiffert D. A. In vitro, antithrombotic and bleeding time studies of BMS-654457, a small-molecule, reversible and direct inhibitor of factor XIa // J. Thromb. Thrombolysis. 2015. № 40. P. 416–423. https://doi.org/10.1007/s11239-015-1258-7
  11. Pinto D. J. P., Orwat M. J., Smith L. M., Quan M. L., Lam P. Y. S., Rossi K. A, Apedo A., Bozarth J. M., Wu Y., Zheng J. J., Xin B., Toussaint N., Stetsko P., Gudmundsson O., Maxwell B., Crain E. J., Wong P. C., Lou Z., Harper T. W., Chacko S. A. Discovery of a parenteral small molecule coagulation factor XIa inhibitor clinical candidate (BMS-962212) // J. Med. Chem. 2017. Vol. 60, № 23. P. 9703–9723. https://doi.org/10.1021/acs.jmedchem.7b01171
  12. Amin K. M., Gawad N. M. A., Rahman D. E. A., El Ashry M. K. M. New series of 6-substituted coumarin derivatives as effective factor Xa inhibitors: Synthesis, in vivo antithrombotic evaluation and molecular docking // Bioorg. Chem. 2014. Vol. 52. P. 31–43. https://doi.org/10.1016/j.bioorg.2013.11.002
  13. Santana-Romo F., Lagos C. F., Duarte Y., Castillo F., Moglie Ya., Maestro M. A., Charbe N., Zacconi F. C. Innovative Three-step microwave-promoted synthesis of N-propargyltetrahydroquinoline and 1,2,3-triazole derivatives as a potential factor Xa (FXa) inhibitors: Drug design, synthesis, and biological evaluation // Molecules. 2020. Vol. 25, № 3. 491 p. https://doi.org/10.3390/molecules25030491
  14. Wissel G., Wissel G., Kudryavtsev P., Ghemtio L., Tammela P., Wipf P., Yliperttula M., Finel M., Urtti A., Kidron H., Xhaard H. Exploring the structure-activity relationships of ABCC2 modulators using a screening approach // Bioorganic & Medicinal Chemistry. 2015. Vol. 23, № 13. P. 3513–3525. https://doi.org/10.1016/j.bmc.2015.04.029
  15. Потапов А. Ю., Папонов Б. В., Подоплелова Н. А., Пантелеев М. А., Поликарчук В. А., Леденева И. В., Столповская Н. В., Крыльский Д. В., Шихалиев Х. С. Синтез и исследование новых ингибиторов факторов свертывания крови Xa и XIa ряда 2H-пиранохинолин-2-онов // Известия Академии наук. Серия химическая. 2021. Т. 70, № 3. С. 492–497.
  16. Zhang H., Fang X., Meng Q., Mao Y., Xu Y., Fan T., An J., Huang Z. Design, synthesis and characterization of potent microtubule inhibitors with dual anti-proliferative and anti-angiogenic activities // European Journal of Medicinal Chemistry. 2018. № 157. P. 380–396. https://doi.org/10.1016/j.ejmech.2018.07.043

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).