Influence of electrospinning conditions on the characteristics of a nonwoven material based on fl uoroplast P(VDF-TFE)

详细

Nonwovens produced through electrospinning technique have been successfully used in various fi elds due to their unique properties. It is essential to investigate the impact of the parameters in the manufacturing process on the resulting properties of these materials. This research focuses on nonwovens made from fl uoroplast P(VDF-TFE) using a horizontal spraying system with a vertically positioned collector. The parameters studied include the interelectrode distance, the electric fi eld strength, and the viscosity of the molding solution. The study aims to determine the optimal parameters for producing nonwovens with specifi c characteristics, such as size, fi ber diameter, and surface wettability. The results indicate that the interelectrode distance between 15 and 25 centimeters yields the best results. In this study, we have investigated the change in viscosity of the solution during the electrospinning process and have found that it should not exceed 5–7%. Additionally, we have observed changes in the structure of the polymer macromolecules, which depended on the rate of solvent evaporation during the fi ber stretching process. The results obtained in this research can be used to optimize the technological processes for industrial production of nonwoven fabrics made from fl uoroplast P(VDF-TFE) with specifi c properties.

作者简介

Anna Shabunina

Saratov State University

ORCID iD: 0009-0006-5329-9896
83, Astrakhanskaya str., Saratov, 410012, Russia

Larisa Volokovoynova

Saratov State University

ORCID iD: 0000-0001-6780-9865
83, Astrakhanskaya str., Saratov, 410012, Russia

Ilia Kozhevnikov

Saratov State University

83, Astrakhanskaya str., Saratov, 410012, Russia

Dmitrij Zaitsev

Saratov State University

83, Astrakhanskaya str., Saratov, 410012, Russia

Denis Terin

Saratov State University

83, Astrakhanskaya str., Saratov, 410012, Russia

Мariia Saveleva

Saratov State University

ORCID iD: 0000-0003-2021-0462
83, Astrakhanskaya str., Saratov, 410012, Russia

Tatyana Rusanova

Saratov State University

83, Astrakhanskaya str., Saratov, 410012, Russia

Alexey Serdobintsev

Saratov State University

83, Astrakhanskaya str., Saratov, 410012, Russia

Polina Demina

Saratov State University

ORCID iD: 0000-0002-9203-582X
83, Astrakhanskaya str., Saratov, 410012, Russia

参考

  1. Batra S. K., Pourdeyhimi B. Introduction to Nonwovens Technology. Destech Publications, Inc., 2012. 366 p.
  2. Иноземцева О. А., Сальковский Ю. Е., Северюхина А. Н., Видяшева И. В., Петрова Н. В., Метвалли Х. А., Стецюра И. Ю., Горин Д. А. Электроформование функциональных материалов для биомедицины и тканевой инженерии // Успехи химии. 2015. Т. 84, № 3. С. 251-74. https://doi.org/10.1070/RCR4435?locatt=label:RUSSIAN
  3. Martínez-Hergueta F., Ridruejo A., González C., LLorca J. Ballistic performance of hybrid nonwoven/woven polyethylene fabric shields // International Journal of Impact Engineering. 2018. Vol. 111. P. 55-65. https://doi.org/10.1016/j.ijimpeng.2017.08.011
  4. Handbook of Nonwovens / ed. S. J. Russell. Woodhead Publishing, 2006. 530 p.
  5. Wendorff J. H., Agarwal S., Greiner A. Electrospinning: Materials, Processing, and Applications. Weinheim: Wiley-VCH, 2012. 241 p.
  6. Li S., Duan G., Zhang G., Yang H., Hou H., Dai Y., Sun Y., Jiang S. Electrospun nanofiber nonwovens and sponges towards practical applications of waterproofing, thermal insulation, and electromagnetic shielding/absorption // Materials Today Nano. 2024. Vol. 25. Art. 100452. https://doi.org/10.1016/j.mtnano.2024.100452
  7. Azmami O., Sajid L., Majid S., Ahmadi Z. El, Benayada A., Gmouh S. Development and application of nonwovens based on palm fiber as reinforcements of unsaturated polyester // Journal of Composite Materials. 2023. Vol. 57, № 5. P. 1035-1054. https://doi.org/10.1177/00219983221148824
  8. Gaynor J. G., Szlek D. B., Kwon S., Tiller P. S., Byington M. S., Argyropoulos D. S. Lignin use in nonwovens: A review // BioResources. 2022. Vol. 17, № 2. P. 3445-3488. https://doi.org/10.15376/biores.17.2.Gaynor
  9. Tamzid F., Sakhawat S. B., Rashid T. U. Chitosan based electrospun nanofibrous materials: A sustainable alternative for food packaging // Trends in Food Science & Technology. 2024. Vol. 151. Art. 104617. https://doi.org/10.1016/j.tifs.2024.104617
  10. Дмитриев Ю. А., Шиповская А. Б., Коссович Л. Ю. Влияние характеристик прядильного раствора и параметров электроформования на скорость образования и диаметр волокон из хитозана // Известия высших учебных заведений. Серия: Химия и химическая технология. 2011. Т. 54, № 11. С. 109-112.
  11. Jiang S., Cheong J. Y., Nam J. S., Kim I.-D., Agarwal S., Greiner A. High-density fibrous polyimide sponges with superior mechanical and thermal properties // ACS Applied Materials & Interfaces. 2020. Vol. 12, № 16. P. 19006-19014. https://doi.org/10.1021/acsami.0c02004
  12. Yao K., Song C., Fang H., Wang F., Chen L., Jiang S., Zha G., Hou H. Freezing-extraction/vacuum-drying method for robust and fatigue-resistant polyimide fibrous aerogels and their composites with enhanced fire retardancy // Engineering. 2023. Vol. 21. P. 152-161. https://doi.org/10.1016/j.eng.2021.08.024
  13. Tao D., Li X., Dong Y., Zhu Y., Yuan Y., Ni Q., Fu Y., Fu S. Super-low thermal conductivity fibrous nanocomposite membrane of hollow silica/polyacrylonitrile // Composites Science and Technology. 2020. Vol. 188. Art. 107992. https://doi.org/10.1016/j.compscitech.2020.107992
  14. Zhao J., Zhu W., Wang X., Liu L., Yu J., Ding B. Fluorine-free waterborne coating for environmentally friendly, robustly water-resistant, and highly breathable fibrous textiles // ACS Nano. 2020. Vol. 14, № 1. P. 1045-1054. https://doi.org/10.1021/acsnano.9b08595
  15. Cheng X. Q., Jiao Y., Sun Z., Yang X., Cheng Z., Bai Q., Zhang Y., Wang K., Shao L. Constructing scalable superhydrophobic membranes for ultrafast water-oil separation // ACS Nano. 2021. Vol. 15, № 2. P. 3500-3508. https://doi.org/10.1021/acsnano.1c00158
  16. Lee S., Park J., Kim M.C., Kim M., Park P., Yoon I.-J., Nah J. Polyvinylidene fluoride core-shell nanofiber membranes with highly conductive shells for electromagnetic interference shielding // ACS Applied Materials & Interfaces. 2021. Vol. 13, № 21. P. 25428-25437. https://doi.org/10.1021/acsami.1c06230
  17. Yue Y., Gong X., Jiao W., Li Y., Yin X., Si Y., Yu J., Ding B. In situ electrospinning of thymol-loaded polyurethane fibrous membranes for waterproof, breathable, and antibacterial wound dressing application // Journal of Colloid and Interface Science. 2021. Vol. 592. P. 310-318. https://doi.org/10.1016/j.jcis.2021.02.048
  18. Liang Y., Ju J., Deng N., Zhou X., Yan J., Kang W., Cheng B. Super-hydrophobic self-cleaning bead-like SiO2@PTFE nanofiber membranes for waterproof-breathable applications // Applied Surface Science. 2018. Vol. 442. P. 54-64. https://doi.org/10.1016/j.apsusc.2018.02.126
  19. Drobny J. G. Fluoroplastics. iSmithers Rapra Publ., 2005. 192 p. (Rapra Technology Limited).
  20. Drobny J. G., Ebnesajjad S. Technology of Fluoropolymers: A Concise Handbook. CRC Press, 2023. 348 p.
  21. Ohkura M., Morizawa Y. Chapter 4: Fluoroplastics and fluoroelastomers - basic chemistry and high-performance applications // Fluorinated Polymers / eds. B. Ameduri, H. Sawada. 2016. Vol. 2. P. 80-109 (Polymer Chemistry Series). https://doi.org/10.1039/9781782629368-00080
  22. Kovalenko M. V., Protesescu L., Bodnarchuk M. I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals // Science. 2017. Vol. 358, № 6364. P. 745-750. https://doi.org/10.1126/science.aam7093
  23. Kostopoulou A., Brintakis K., Nasikas N. K., Stratakis E. Perovskite nanocrystals for energy conversion and storage // Nanophotonics. 2019. Vol. 8, № 10. P. 1607-1640. https://doi.org/10.1515/nanoph-2019-0119
  24. Wang S., Yousefi Amin A.A., Wu L., Cao M., Zhang Q., Ameri T. Perovskite nanocrystals: Synthesis, stability, and optoelectronic applications // Small Structures. 2021. Vol. 2, № 3. Art. 2000124. https://doi.org/10.1002/sstr.202000124
  25. Li Q., Zhao Y., Guo J., Zhou Q., Chen Q., Wang J. On-surface synthesis: A promising strategy toward the encapsulation of air unstable ultra-thin 2D materials // Nanoscale. 2018. Vol. 10, № 8. P. 3799-3804. https://doi.org/10.1039/C7NR09178H
  26. Fedorov P. P., Semashko V. V., Korableva S. L. Lithium rare-earth fluorides as photonic materials: 1. Physicochemical characterization // Inorganic Materials. 2022. Vol. 58, № 3. P. 223-245. https://doi.org/10.1134/S0020168522030049
  27. Ковыршина А. А., Цюпка Д. В., Попова Н. Р., Горячева И. Ю., Горячева О. А. Модификация наночастиц оксида церия полимерными материалами // Известия Саратовского университета. Новая серия. Серия: Физика. 2024. Т. 24, вып. 3. С. 281-289. https://doi.org/10.18500/1817-3020-2024-24-3-281-289, EDN: WLYPMD
  28. Jacobs V., Anandjiwala R. D., Maaza M. The influence of electrospinning parameters on the structural morphology and diameter of electrospun nanofibers // Journal of Applied Polymer Science. 2010. Vol. 115, № 5. P. 3130-3136. https://doi.org/10.1002/app.31396
  29. Thompson C. J., Chase G. G., Yarin A. L., Reneker D. H. Effects of parameters on nanofiber diameter determined from electrospinning model // Polymer. 2007. Vol. 48, № 23. P. 6913-6922. https://doi.org/10.1016/j.polymer.2007.09.017
  30. Anon Image Processing and Analysis in Java. URL: https://imagej.net/ij/index.html (дата обращения: 26.05.2024).
  31. Wang Z., Cui Y., Wang J., Yang X., Wu Y., Wang K., Gao X., Li D., Li Y., Zheng X.-L., Zhu Y., Kong D., Zhao Q. The effect of thick fibers and large pores of electrospun poly(ε-caprolactone) vascular grafts on macrophage polarization and arterial regeneration // Biomaterials. 2014. Vol. 35, № 22. P. 5700-5710. https://doi.org/10.1016/j.biomaterials.2014.03.078
  32. Sedlak P., Sobola D., Gajdos A., Dallaev R., Nebojsa A., Kubersky P. Surface analyses of PVDF/NMP/[EMIM][TFSI] solid polymer electrolyte // Polymers. 2021. Vol. 13, № 16. Art. 2678. https://doi.org/10.3390/polym13162678
  33. Kmetík M., Kopal I., Král M., Dendisová M. Characterization of modified PVDF membranes using fourier transform infrared and raman microscopy and infrared nanoimaging: Challenges and advantages of individual methods // ACS Omega. 2024. Vol. 9, № 23. P. 24685-24694. https://doi.org/10.1021/acsomega.4c01197
  34. Kaspar P., Sobola D., Částková K., Dallaev R., Šťastná E., Sedlák P., Knápek A., Trčka T., Holcman V. Case study of polyvinylidene fluoride doping by carbon nanotubes // Materials. 2021. Vol. 14, № 6. Art. 1428. https://doi.org/10.3390/ma14061428
  35. Punetha D., Kumar A., Pandey S.K., Chakrabarti S. Tertiary nanocomposite-based self-powered E-skin as energy harvester and electronic nose // Journal of Materials Science: Materials in Electronics. 2024. Vol. 35, № 2. P. 160. https://doi.org/10.1007/s10854-023-11776-x

补充文件

附件文件
动作
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».