Genomic rearrangements aff ect the resistance of biofi lms of soil bacteria Azospirillum brasilense to abiotic stress

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

The bacteria Azospirillum brasilense, used as biofertilizers, have a signifi cant positive eff ect on the growth and development of plants. The genome of the strain A. brasilense Sp7 is represented by a chromosome and numerous plasmids with molecular weight of 90, 115, and over 300 MDa. Genomic rearrangements that cause changes in the “plasmid profi le” can contribute to the formation of subpopulations or phenotypic variants in a bacterial population. There is little data on the role of such rearrangements in the adaptation of A. brasilenseto dynamic environmental conditions. The ability of azospirilla to form biofi lms also has a determined signifi cance for the successful functioning of the plant-microbial association and the resistance of bacteria and plants to various abiotic stresses. The purpose of this work consisted of the analysis of the genomic rearrangements in spontaneous derivatives of A. brasilense Sp7 and the assessment of the resistance of their biofi lms to drying, water stress and oxidative stress. PCR analysis to detect changes in the structure of genomic DNA was performed using primers corresponding to known conservative motifs in repetitive bacterial nucleotide sequences. The relative amount of the biofi lm biomass was assessed by measuring the crystal violet A540 desorbed after staining. The level of relative respiratory activity of cells in biofi lms was determined by the fl uorometric resazurin test. The non-penetrating osmotic agent PEG 6000 was used to create the osmotic/water stress model. It was shown that rearrangements in genomic DNA contribute to the formation of stable phenotypic variants of the Sp7 strain, which form biofi lms in diff erent ways under water stress conditions. A derived strain of A. brasilense Sp7.8, the biofi lm population of which is more resistant to water stress compared to the parent strain was selected.

Авторлар туралы

Dmitriy Mokeev

Institute of Biochemistry and Physiology of Plants and Microorganisms – Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientifi c Centre of the Russian Academy of Sciences (IBPPM RAS)

ORCID iD: 0000-0002-0558-0775
Саратов, проспект Энтузиастов 13

Elizaveta Telesheva

Institute of Biochemistry and Physiology of Plants and Microorganisms – Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientifi c Centre of the Russian Academy of Sciences (IBPPM RAS)

Saratov 410049, Russia

Irina Volokhina

Institute of Biochemistry and Physiology of Plants and Microorganisms – Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientifi c Centre of the Russian Academy of Sciences (IBPPM RAS)

ORCID iD: 0000-0002-9088-481X
Саратов, проспект Энтузиастов 13

Stella Yevstigneyeva

Institute of Biochemistry and Physiology of Plants and Microorganisms of the Russian Academy of Sciences

410049, Russia, Saratov, Entuziastov Avenue, 13

Timofey Pylaev

Institute of Biochemistry and Physiology of Plants and Microorganisms of the Russian Academy of Sciences

410049, Russia, Saratov, Entuziastov Avenue, 13

Liliya Petrova

Institute of Biochemistry and Physiology of Plants and Microorganisms of the Russian Academy of Sciences

410049, Russia, Saratov, Entuziastov Avenue, 13

Yulia Filip’echeva

Institute of Biochemistry and Physiology of Plants and Microorganisms of the Russian Academy of Sciences

410049, Russia, Saratov, Entuziastov Avenue, 13

Andrei Shelud’ko

Institute of Biochemistry and Physiology of Plants and Microorganisms of the Russian Academy of Sciences

410049, Russia, Saratov, Entuziastov Avenue, 13

Әдебиет тізімі

  1. Fibach-Paldi S., Burdman S., Okon Y. Key physiological properties contributing to rhizosphere adaptation and plant growth promoting abilities of Azospirillum brasilense // FEMS Microbiol. Lett. 2012. Vol. 326. P. 99–108. https://doi.org/10.1111/j.1574-6968.2011.02407.x
  2. Fukami J., Cerezini P., Hungria M. Azospirillum: benefi ts that go far beyond biological nitrogen fi xation // AMB Expr. 2018. Vol. 8. P. 73–85. https://doi.org/10.1186/s13568-018-0608-1
  3. Lipa P., Janczarek M. Phosphorylation systems in symbiotic nitrogen-fi xing bacteria and their role in bacterial adaptation to various environmental stresses // PeerJ. 2020. Feb11 : 8 : e8466. https://doi.org/10.7717/peerj.8466
  4. Ansari F. A., Jabeen M., Ahmad I. Pseudomonas azotoformans FAP5, a novel biofi lm-forming PGPR strain, alleviates drought stress in wheat plant // Int. J. Environ. Sci. Technol. 2021. Vol. 18. P. 3855–3870. https://doi.org/10.1007/s13762-020-03045-9
  5. Vurukonda S. S. K. P., Sandhya V., Shrivastava M., Ali S. K. Z. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria // Microbiol.Res. 2016. Vol. 184. P. 13–24. https://doi.org/10.1016/j.micres.2015.12.003
  6. Hsiao T. C. Plant responses to water stress // Ann. Rev. Plant Physiol. 1973. Vol. 24. P. 519–570. https://doi.org/10.1146/annurev.pp.24.060173.002511
  7. Bogino P. C., Oliva M. M., Sorroche F. G., Giordano W. The role of bacterial biofi lms and surface components in plant-bacterial associations // Int. J. Mol. Sci. 2013. Vol. 14. P. 15838–15859. https://doi.org/10.3390/ijms140815838
  8. Lerner A., Valverde A., Castro-Sowinski S., Lerner H., Okon Y., Burdman S. Phenotypic variation in Azospirillum brasilense exposed to starvation // Environ. Microbiol. Rep. 2010. Vol. 2. P. 577–586. https://doi.org/10.1111/j.1758-2229.2010.00149.x
  9. Volfson V., Fibach-Paldi Sh., Paulucci N. S., Dardanelli M., Matan O., Burdman S., Okon Y. Phenotypic variation in Azospirillum brasilense Sp7 does not infl uence plant growth promotion effects // Soil Biology and Biochemistry. 2013. Vol. 67. P. 255–262. https://doi.org/10.1016/j.soilbio.2013.09.008
  10. Petrova L. P., Borisov I. V., Katsy E. I. Plasmid rearrangements in Azospirillum brasilense // Microbiology (Moscow). 2005. Vol. 74, № 4. P. 495–497. https://doi.org/10.1007/s1102100500948
  11. Petrova L. P., Shelud’ko A. V., Katsy E. I. Plasmid rearrangements and alterations in Azospirillum brasilense biofilm formation // Microbiology (Moscow). 2010. Vol. 79, № 1. P. 121–124. https://doi.org/10.1134/ S00226261710010169
  12. Katsy E. I., Petrova L. P. Genome rearrangements in Azospirillum brasilense Sp7 with the involvement of the plasmid pRhico and the prophage ΦAb-Cd // Russ. J. Genet. 2015. Vol. 51, № 132. P. 1165–117. https://doi. org/10.1134/S1022795415110095
  13. Shelud’ko A. V., Mokeev D. I., Evstigneeva S. S., Filip’echeva Yu. A., Burov A. M., Petrova L. P., Ponomareva E. G., Katsy E. I. Cell ultrastructure in biofi lms of Azospirillum brasilense // Microbiology. 2020. Vol. 89, № 1. P. 50–63. https://doi.org/10.1134/S0026261720010142
  14. Flemming H.-C., Wingender J. The biofi lm matrix // Nat. Rev. Microbiol. 2010. Vol. 8, № 9. P. 623–633. https://doi.org/10.1038/nrmicro2415
  15. Ramírez-Mata A., López-Lara L. I., Xiqui-Vázquez L., Jijón-Moreno S., Romero-Osorio A., Baca B. E. The cyclic-di-GMP diguanylate cyclase CdgA has a role in biofi lm formation and exopolysaccharide production in Azospirillum brasilense // Res. Microbiol. 2016. Vol. 167. P. 190–201. https://doi.org/10.1016/j.resmic.2015.12.004
  16. Wang D., Xu A., Elmerich C., Ma L. Z. Biofi lm formation enables free-living nitrogen-fi xing rhizobacteria to fi x nitrogen under aerobic conditions // ISME J. 2017. Vol. 11. P. 1602–1613. https://doi.org/10.1038/ismej.2017.30
  17. Shelud’ko A. V., Filip’echeva Yu. A., Telesheva E. M., Burov A. M., Evstigneeva S. S., Burygin G. L., Petrova L. P. Characterization of carbohydrate-containing components of Azospirillum brasilense Sp245 biofi lms // Microbiology. 2018. Vol. 87, № 5. P. 610–620. https://doi.org/10.1134/S0026261718050156.
  18. Wisniewski-Dyé F., Vial L. Phase and antigenic variation mediated by genome modifi cations // Antonie van Leeuwenhoek J. Microbiol. 2008. Vol. 94. P. 493–515. https://doi.org/10.1007/s10482-008-9267-6
  19. Versalovic J., Koeuth T., Lupski R. Distribution of repetitive DNA sequences in eubacteria and application to fi nerpriting of bacterial genomes // Nucleic Acids Res. 1991. Vol. 19, № 24. P. 6823–6831. https://doi.org/10.1093/nar/19.24.6823
  20. Fancelli S., Castaldini M., Ceccherini M. T., Di Serio C., Fani R., Gallori E., Marangolo M., Miclaus N., Bazzicalupo M. Use of random amplifi ed polymorphic DNA markers for the detection of Azospirillum strains in soil microcosms // Appl. Microbiol. Biotechnol. 1998. Vol. 49, № 2. P. 221–225. https://doi.org/10.1007/s002530051162
  21. Tarrand J. J., Krieg N. R., Döbereiner J. A taxonomic study of the Spirillum lipoferum group with description of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum braslense sp. nov. // Can. J. Microbiol. 1978. Vol. 24, № 8. P. 967–980. https://doi.org/10.1139/m78-160
  22. Eskew D. L, Focht D. D., Ting L. P. Nitrogen fi xation, denitrification and pleomorphic growth in a highly pigmented Spirillum lipoferum // Appl. Environ. Microbiol. 1977. Vol. 34. P. 582–585. https://doi.org/10.1128/aem.34.5.582-585.1977
  23. Döbereiner J., Day J. M. Associative symbiosis in tropical grass: Characterization of microorganisms and dinitrogen fi xing sites // Symposium on Nitrogen Fixation / eds. W. E. Newton, C. J. Nijmans. Pullman : Washington State University Press, 1976. P. 518–538.
  24. O’Toole G. A., Kolter R. Initiation of biofi lm formation in Pseudomonas fl uorescens WCS365 proceeds via multiple, convergent signalling pathways: A genetic analysis // Mol. Microbiol. 1998. Vol. 28, № 3. P. 449–461. https://doi.org/10.1046/j.1365-2958.1998.00797.x
  25. Chutia J., Borah S. P. Water stress effects on leaf growth and chlorophyll content but not the grain yield in traditional rice (Oryza sativa Linn.) genotypes of Assam, India: II. Protein and proline status in seedlings under PEG induced water stress // Am. J. Plant Sci. 2012. Vol. 3. P. 971–980. http://dx.doi.org/10.4236/ajps.2012.37115
  26. Malinich E. A., Bauer C. E. The plant growth promoting bacterium Azospirillum brasilense is vertically transmitted in Phaseolus vulgaris (common bean) // Symbiosis. 2018. Vol. 76, № 2. P. 97–108. https://doi.org/10.1007/s13199-018-0539-2
  27. Schloter M., Hartmann A. Endophytic and surface colonization of wheat roots (Triticum aestivum) by different Azospirillum brasilense strains studied with strain-specifi c monoclonal antibodies // Symbiosis. 1998. Vol. 25. P. 159–179.
  28. Pradedova E. V., Isheeva O. D., Salyaev R. K. Classification of the antioxidant defense system as the ground for reasonable organization of experimental studies of the oxidative stress in plants // Russ. J. Plant. Physiol. 2011. Vol. 58. P. 210–217. https://doi.org/10.1134/S1021443711020166
  29. Notununu I., Moleleki L., Roopnarain A., Adeleke R. Effects of plant growth-promoting rhizobacteria on the molecular responses of maize under drought and heat stresses: A review // Pedosphere. 2022. Vol. 32. P. 90–106. https://doi.org/10.1016/S10020160(21)60051-6

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».