Influence of a polymeric infiltrant on the density of enamel white spot lesions

Cover Page

Cite item

Full Text

Abstract

In modern dental practice,  treatment of early stages of caries is possible using minimally invasive intervention. In this work, using X-ray computed microtomography (micro-CT), an ex vivo non-destructive study of the density of white spot lesions was carried out before and after the application of a polymer infiltrant. The use of a calibration phantom during microtomography of samples, as well as the technique of segmenting regions of interest on caries foci after reconstruction of microtomograms of teeth, made it possible to study the quantitative effect of the infiltrant on pathologically altered enamel.

About the authors

Evgenii Valerievich Sadyrin

Don State Technical University

Russia, 344010, Rostov-on-Don, pl. Gagarina, 1

References

  1. Roopa K. B., Pathak S., Poornima P., Neena I. E. White spot lesions: A literature review // Journal of Pediatric Dentistry. 2015. Vol. 3, iss. 1. P. 1–7. https://doi.org/10.4103/2321-6646.151839
  2. Садырин Е. В., Ёгина Д. В., Васильев А. С., Айзикович С. М. Оценка влияния кариеса в стадии белого пятна на механические свойства эмали и дентина зуба человека // Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика. 2022. Т. 22, вып. 3. С. 346–359. https://doi.org/10.18500/1816-9791-2022-22-3-346-359, EDN: ZTLZZG
  3. Sadyrin E., Swain M., Mitrin B., Rzhepakovsky I., Nikolaev A., Irkha V., Yogina D., Lyanguzov N., Maksyukov S., Aizikovich S. Characterization of enamel and dentine about a white spot lesion: Mechanical properties, mineral density, microstructure and molecular composition // Nanomaterials. 2020. Vol. 10, iss. 9. P. 1889. https://doi.org/10.3390/nano10091889
  4. Huang T. T., Jones A. S., He L. H., Darendeliler M. A., Swain M. V. Characterisation of enamel white spot lesions using X-ray micro-tomography // Journal of Dentistry. 2007. Vol. 35, iss. 9. P. 737–743. https://doi.org/10.1016/j.jdent.2007.06.001
  5. Marya A., Venugopal A., Karobari M. I., Rokaya D. White spot lesions: A serious but often ignored complication of orthodontic treatment // The Open Dentistry Journal. 2022. Vol. 16, iss. 1. P. 1–4. https://doi.org/10.2174/18742106-v16-e2202230
  6. Chen L. R., Lai C. L., Chen J. P., Kao C. T. The effect of probiotics use on salivary cariogenic bacteria in orthodontic patients with various caries risk status // Nutrients. 2022. Vol. 14, iss. 15. P. 3196. https://doi.org/10.3390/nu14153196
  7. Nyvad B., Crielaard W., Mira A., Takahashi N., Beighton D. Dental caries from a molecular microbiological perspective // Caries Research. 2013. Vol. 47, iss. 2. P. 89–102. https://doi.org/10.1159/000345367
  8. Yu O. Y., Zhao I. S., Mei M. L., Lo E. C. M., Chu C. H. A review of the common models used in mechanistic studies on demineralization-remineralization for cariology research // Dentistry Journal. 2017. Vol. 5, iss. 20. P. 20. https://doi.org/10.3390/dj5020020
  9. Guerra F., Mazur M., Nardi G. M., Corridore D., Pasqualotto D., Rinado F., Ottolenghi L. Dental hypomineralized enamel resin infiltration. Clinical indications and limits // Senses and Sciences. 2015. Vol. 2, iss. 4. P. 1–5. https://doi.org/10.14616/sands-2015-4-135139
  10. Sadyrin E. V., Kislyakov E. A., Karotkiyan R. V., Yogina D. V., Drogan E. G., Swain M. V., Maksyukov S. Yu., Nikolaev A. L., Aizikovich S. M. Influence of citric acid concentration and etching time on enamel surface roughness of prepared human tooth: In vitro study // Plasticity, Damage and Fracture in Advanced Materials / eds.: H. Altenbach, M. Brunig, Z. Kowalewski. Cham : Springer, 2020. P. 135–150. (Advanced Structured Materials, vol. 121). https://doi.org/10.1007/978-3-030-34851-9_8
  11. Hicks J., Garcia-Godoy F., Flaitz C. Biological factors in dental caries: Role of remineralization and fluoride in the dynamic process of demineralization and remineralization (part 3) // Journal of Clinical Pediatric Dentistry. 2004. Vol. 28, iss. 3. P. 203–214. https://doi.org/10.17796/jcpd.28.3.w0610427l746j34n
  12. Gomez J. Detection and diagnosis of the early caries lesion // BMC Oral Health. 2015. Vol. 15 (Suppl. 1). S3. https://doi.org/10.1186/1472-6831-15-S1-S3
  13. Basaran G., Veli I., Basaran E. G. Non-cavitated approach for the treatment of white spot lesions: A case report // International Dental Research. 2011. Vol. 1, iss. 2. P. 65–69. https://doi.org/10.5577/intdentres.2011.vol1.no2.5
  14. Yuan H., Li J., Chen L., Cheng L., Cannon R. D., Mei L. Esthetic comparison of white-spot lesion treatment modalities using spectrometry and fluorescence // The Angle Orthodontist. 2014. Vol. 84, iss. 2. P. 343–349. https://doi.org/10.2319/032113-232.1
  15. Eckstein A., Helms H. J., Knosel M. Camouflage effects following resin infiltration of postorthodontic white-spot lesions in vivo: One-year follow-up // The Angle Orthodontist. 2015. Vol. 85, iss. 3. P. 374–380. https://doi.org/10.2319/050914-334.1
  16. Kim S., Kim E. Y., Jeong T. S., Kim J. W. The evaluation of resin infiltration for masking labial enamel white spot lesions // International Journal of Paediatric Dentistry. 2011. Vol. 21, iss. 4. P. 241–248. https://doi.org/10.1111/j.1365-263X.2011.01126.x
  17. Sadyrin E. V., Yogina D. V., Swain M. V., Maksyukov S. Yu., Vasiliev A. S. Efficacy of dental materials in terms of apparent mineral density restoration: Composite resin, glass ionomer cement and infiltrant // Composites Part C: Open Access. 2021. Vol. 6. P. 100192. https://doi.org/10.1016/j.jcomc.2021.100192
  18. Садырин Е. В., Ёгина Д. В., Волков P. С., Айзикович P. М. Оценка плотности и микрогеометрических характеристик пломб из стеклоиономерного цемента и композитного материала: биомеханическое ex vivo исследование // Российский журнал биомеханики. 2022. Т. 26, № 2. С. 67–73. https://doi.org/10.15593/RZhBiomeh/2022.2.06
  19. Borges A. B., Caneppele T. M. F., Masterson D., Maia L. C. Is resin infiltration an effective esthetic treatment for enamel development defects and white spot lesions? A systematic review // Journal of Dentistry. 2017. Vol. 56. P. 11–19. https://doi.org/10.1016/j.jdent.2016.10.010
  20. Fisher J., Glick M. A new model for caries classification and management: The FDI World Dental Federation caries matrix // Journal of the American Dental Association. 2012. Vol. 143, iss. 6. P. 546–551. https://doi.org/10.14219/jada.archive.2012.0216
  21. Alyahya A., Alqareer A., Swain M. Microcomputed tomography calibration using polymers and minerals for enamel mineral content quantitation // Medical Principles and Practice. 2019. Vol. 28, iss. 3. P. 247–255. https://doi.org/10.1159/000499186
  22. Hikita K., Van Meerbeek B., De Munck J., Ikeda T., Van Landuyt K., Maida T., Lambrechts P., Peumans M. Bonding effectiveness of adhesive luting agents to enamel and dentin // Dental Materials. 2007. Vol. 23, iss. 1. P. 71–80. https://doi.org/10.1016/j.dental.2005.12.002
  23. Swain M. V., Xue J. State of the art of micro-CT applications in dental research // International Journal of Oral Science. 2009. Vol. 1, iss. 4. P. 177–188. https://doi.org/10.4248/IJOS09031
  24. Sadyrin E. V. Correlating the mechanical properties of the mineral density of brown spot lesion in dentine using nanoindentation and X-ray micro-tomography // Advanced Materials Modelling for Mechanical, Medical and Biological Applications / eds.: H. Altenbach, V. A. Eremeyev, A. S. Vasiliev. Cham : Springer, 2022. P. 389–398. (Advanced Structured Materials, vol. 155). https://doi.org/10.1007/978-3-030-81705-3_21
  25. Huang T. T. Y., He L. H., Darendeliler M. A., Swain M. V. Correlation of mineral density and elastic modulus of natural enamel white spot lesions using X-ray microtomography and nanoindentation // Acta Biomaterialia. 2010. Vol. 6, iss. 12. P. 4553–4559. https://doi.org/10.1016/j.actbio.2010.06.028
  26. Sadyrin E. V., Mitrin B. I., Yogina D. V., Swain M. V. Preliminary study of distribution of mechanical properties and mineral density by depth of liquid saturated carious dentine // IOP Conference Series: Materials Science and Engineering. 2021. Vol. 102. Art. 012056. https://doi.org/10.1088/1757-899X/1029/1/012056

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».