Об одном следствии чебышевского альтернанса

Обложка

Цитировать

Полный текст

Аннотация

Рассматривается классическая задача наилучшего приближения непрерывной функции полиномом по чебышевской системе функций. Известно, что решение задачи характеризуется альтернансом. Кроме того, имеет место линейная функция роста отклонения целевой функции коэффициентов полинома от ее минимального значения относительно отклонения вектора коэффициентов от оптимального. C помощью средств выпуклого анализа получена формула точного коэффициента этого линейного роста. В отличие от полученных ранее, она выражена в конструктивной для реализации форме через значения функций чебышевской системы в точках, реализующих альтернанс.

Об авторах

Сергей Иванович Дудов

Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского

Email: DudovSI@sgu.ru
ORCID iD: 0000-0003-0098-3652
SPIN-код: 9937-8404
Россия, г. Саратов, ул. Астраханская, 83

Михаил Анатольевич Осипцев

Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского

Автор, ответственный за переписку.
Email: Osipcevm@gmail.com
ORCID iD: 0000-0003-1051-0250
SPIN-код: 5249-2944
Россия, г. Саратов, ул. Астраханская, 83

Список литературы

  1. Newman D. J., Shapiro H. S. Some theorems on Cebysev approximation // Duke Mathematical Journal. 1963. Vol. 30, iss. 4. P. 673–681. https://doi.org/10.1215/S0012-7094-63-03071-0
  2. Cline A. K. Lipschitz conditions on uniform approximation operators // Journal of Approximation Theory. 1973. Vol. 8, iss. 2. P. 160–172. https://doi.org/10.1016/0021-9045(73)90025-7
  3. Bartelt M. On Lipschitz conditions, strong unicity and a Theorem of A. K. Cline // Journal of Approximation Theory. 1975. Vol. 14, iss. 4. P. 245–250. https://doi.org/10.1016/0021-9045(75)90072-6
  4. Маринов А. В. О равномерных константах сильной единственности в чебышевских приближениях и основополагающих результатах Н. Г. Чеботарева // Известия Российской академии наук. Серия математическая. 2011. Т. 75, вып. 3. С. 161–188. https://doi.org/10.4213/im4255
  5. Чеботарев Н. Г. Об одном критерии минимакса // Доклады Академии наук СССР. 1943. Т. 39, № 9. С. 373–376.
  6. Чеботарев Н. Г. Собрание сочинений : в 2 т. Т. 2. Mосква : Изд-во Академии наук СССР, 1949. 588 с.
  7. Карлин С., Стадден В. Чебышевские системы и их применение в анализе и статистике. Mосква : Наука, 1976. 568 c.
  8. Пшеничный Б. Н. Выпуклый анализ и экстремальные задачи. Mосква : Наука, 1980. 320 с.
  9. Демьянов В. Ф., Малоземов В. Н. Введение в минимакс. Mосква : Наука, 1972. 368 с.
  10. Дзядык В. К. Введение в теорию равномерного приближения функций полиномами. Mосква : Наука, 1977. 510 с.
  11. Поляк Б. Т. Введение в оптимизацию. Mосква : Наука, 1983. 383 с.
  12. Демьянов В. Ф., Васильев Л. В. Недифференцируемая оптимизация. Mосква : Наука, 1981. 384 с.
  13. Выгодчикова И. Ю., Дудов С. И., Сорина Е. В. Внешняя оценка сегментной функции полиномиальной полосой // Журнал вычислительной математики и математической физики. 2009. Т. 49, № 7. С. 117-1183.
  14. Дудов С. И., Сорина Е. В. Равномерная оценка сегментной функции полиномиальной полосой фиксированной ширины // Журнал вычислительной математики и математической физики. 2011. Т. 51, № 11. С. 1981–1994.
  15. Дудов С. И., Сорина Е. В. Равномерная оценка сегментной функции полиномиальной полосой // Алгебра и анализ. 2012. Т. 24, № 5. С. 44–71.
  16. Волосивец С. С., Дудов С. И., Прохоров Д. В., Хромова Г. В. Новые методы аппроксимации и оптимизации в задачах действительного и комплексного анализа. Саратов : Изд-во Саратовского ун-та, 2016. 296 с. EDN: XSCTLV

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».