Методы машинного обучения в задаче оценки риска мошенничества в автостраховании

Обложка

Цитировать

Полный текст

Аннотация

Оценка уровня мошенничества в автостраховании представляет собой актуальную и сложную задачу, что обусловлено деятельностью мошеннических групп. Для уверенности менеджмента страховых компаний в стратегии противодействия мошенничеству необходим инструмент, позволяющий оценить текущее состояние портфеля претензий. Современные методы машинного обучения позволяют проводить такую оценку, используя данные о страхователях и страховых случаях. При применении данных подходов возникает ряд проблем, не позволяющих достичь необходимого качества выявления мошенничества. К ним можно отнести дисбаланс классов и так называемый дрейф концепции (concept drift), возникающий вследствие изменения сценариев схем мошенников и субъективности экспертной оценки конкретного страхового случая. В настоящем исследовании предлагается подход, позволяющий улучшить метрики моделей для выявления мошенничества в портфеле претензий. Численный эксперимент на двух открытых наборах данных показал прирост полноты выявления страхового мошенничества на 49 п.п. и 19 п.п. в сравнении с классическим моделированием.

Об авторах

Иван Александрович Воробьев

Московский институт электроники и математики им. А. Н. Тихонова НИУ «Высшая школа экономики»; Национальный исследовательский университет «Высшая школа экономики»

Автор, ответственный за переписку.
Email: vorobyev-ivan@yandex.ru
ORCID iD: 0000-0002-2886-6813
Россия, 123458, г. Москва, ул. Таллинская, д. 34

Список литературы

  1. Bao Y., Hilary G., Ke B. Artificial intelligence and fraud detection // Innovative technology at the interface of finance and operations / ed. by V. Babich, J. R. Birge, G. Hilary. Cham : Springer, 2022. P. 223–247. (Springer Series in Supply Chain Management, vol. 11). https://doi.org/10.1007/978-3-030-75729-8_8
  2. Subelj L., Furlan S., Bajec M. An expert system for detecting automobile insurance fraud using social network analysis // Expert Systems with Applications. 2011. Vol. 38, iss. 1. P. 1039–1052. https://doi.org/10.1016/j.eswa.2010.07.143
  3. Jin C., Feng Y., Li F. Concept drift detection based on decision distribution in inconsistent information system // Knowledge-Based Systems. 2023. Vol. 279. Art. 110934. https://doi.org/10.1016/j.knosys.2023.110934
  4. Gupta P., Varshney A., Khan M., Ahmed R., Shuaib M., Alam S. Unbalanced credit card fraud detection data: A machine learning-oriented comparative study of balancing techniques // Procedia Computer Science. 2023. Vol. 218. P. 2575–2584. https://doi.org/10.1016/j.procs.2023.01.231
  5. Pant P., Srivastava P. Cost-sensitive model evaluation approach for financial fraud detection system // 2021 Second International Conference on Electronics and Sustainable Communication Systems (ICESC). Coimbatore, India, 2021. P. 1606–1611. https://doi.org/10.1109/ICESC51422.2021.9532741
  6. Воронцов К. В. Математические методы обучения по прецедентам (теория обучения машин) // «Машинное обучение», курс лекций. 2011. 141 с. URL: http://www.machinelearning.ru/wiki/images/6/6d/Voron-ML-1.pdf (дата обращения: 22.09.2023).
  7. Fawcett T. An introduction to ROC analysis // Pattern Recognition Letters, 2006. Vol. 27, iss. 8. P. 861–874. https://doi.org/10.1016/j.patrec.2005.10.010
  8. Subudhi S., Panigrahi S. Use of optimized Fuzzy C-Means clustering and supervised classifiers for automobile insurance fraud detection // Journal of King Saud University – Computer and Information Sciences. 2020. Vol. 32, iss. 5. P. 568–575. https://doi.org/10.1016/j.jksuci.2017.09.010
  9. Phua C., Alahakoon D. Minority report in fraud detection: Classification of skewed data // ACM SIGKDD Explorations Newsletter. 2004. Vol. 6, iss. 1. P. 50–59. https://doi.org/10.1145/1007730.1007738
  10. Itri B., Mohamed Y., Mohamed Q., Omar B. Performance comparative study of machine learning algorithms for automobile insurance fraud detection // 2019 Third International Conference on Intelligent Computing in Data Sciences (ICDS). Marrakech, Moroko, 2019. P. 1–4. https://doi.org/10.1109/ICDS47004.2019.8942277

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».