Влияние давления азота на состав и структуру тонких пленок GaAs1 – x – yNxBiy

Обложка

Цитировать

Полный текст

Аннотация

Методом импульсного лазерного напыления в атмосфере аргоно-азотной газовой смеси при давлении от 1 до 60 Па были получены тонкие пленки GaAs1 – x – yNxBiy на подложке GaAs (100). Установлено, что с увеличением давления аргоно-азотной газовой смеси от 20 до 60 Па толщина пленок снижалась с 527 до 127 нм в следствии отражения и рассеяния потока плазменного факела на атомах азота и аргона. Показано, что увеличение давления способствовало значительному снижению размеров и плотности капель на поверхности пленок. Все полученные пленки имеют поликристаллическую структуру, а наибольшим кристаллическим совершенством обладает тонкая пленка, полученная при давлении 60 Па. Был проведен теоретический расчет дифрактограммы для суперячейки размером 2×2×2 (64 атома) GaAs0.889N0.037Bi0.074 при помощи программного пакета VASP. Величина ширины на половине максимума интенсивности для рефлекса GaAsNBi (004) снижается с ростом давления аргоно-азотной газовой смеси. Установлено, что при повышении давления аргоно-азотной газовой смеси концентрации азота в тонкой пленке линейно возрастает. Методами рентгеновской дифракции и фотолюминисценции определен состав пленки, полученной при давления аргоно-азотной газовой смеси 60 Па – GaAs0.957N0.012Bi0.021.

Об авторах

Олег Васильевич Девицкий

ФНИЦ ЮНЦ РАН

Автор, ответственный за переписку.
Email: skripalav@info.sgu.ru
ORCID iD: 0000-0003-3153-696X
Scopus Author ID: 57193670678
Россия, 344006, г. Ростов-на-Дону, ул. Чехова, д. 41

Список литературы

  1. Li H., Wang Z. M. Bismuth-Containing Compounds. Springer Series in Materials Science, vol. 186. Springer, New York, 2013. 383 p. https://doi.org/10.1007/978-1-4614-8121-8
  2. Wang L., Zhang L., Yue L., Liang D., Chen X., Li Y., Wang S. Novel dilute bismide, epitaxy, physical properties and device application. Crystals, 2017, vol. 7, no. 3, pp. 1–63. https://doi.org/10.3390/cryst7030063
  3. Tixier S., Webster S. E., Young E.C., Tiedje T., Francoeur S., Mascarenhas A., Wei P., Schiettekatte F. Band gaps of the dilute quaternary alloys GaNxAs1−x−yBiy and Ga1−yInyNxAs1−x. Applied Physics Letter, 2005, vol. 86, no. 11, article no. 112113. https://doi.org/10.1063/1.1886254
  4. Huang W., Oe K., Feng G., Yoshimoto M. Molecularbeam epitaxy and characteristics of GaNyAs1−x−yBix. Journal Applied Physics, 2005, vol. 98, article no. 053505. https://doi.org/10.1063/1.2032618
  5. Zhao C.-Z., Zhu M.-M., Sun X.-D., Wang S.-S., Wang J. The band gap energy of the dilute nitride alloy GaNxAsyP1−x−y (0 ⩽ x ⩽ 0.07, 0 ⩽ y ⩽ 1) depending on content. Applied Physics A, 2018, vol. 124, no. 2, article no. 216. https://doi.org/10.1007/s00339-018-1654-x
  6. Lu P., Liang D., Chen Y., Zhang C., Quhe R., Wang S. Closing the bandgap for III–V nitrides toward mid-infrared and THz applications. Scientific Reports, 2017, vol. 7, article no. 10594. https://doi.org/10.1038/s41598-017-11093-4
  7. Sweeney S. J., Jin S. R. Bismide-nitride alloys: Promising for efficient light emitting devices in the nearand midinfrared. Journal Applied Physics. 2013, vol. 113, no. 4, article no. 043110. https://doi.org/10.1063/1.4789624
  8. Yoshimoto M., Huang W., Feng G., Oe K. New semiconductor alloy GaNAsBi with temperature-insensitive bandgap. Physica Status Solidi (B): Basic Research, 2006, vol. 243, no. 7, pp. 1421–1425. https://doi.org/10.1002/pssb.200565270
  9. Bushell Z. L., Ludewig P., Knaub N., Batool Z., Hild K., Stolz W., Sweeney S. J., Volz K. Growth and characterisation of Ga(NAsBi) alloy by metal-organic vapour phase epitaxy. Journal of Crystal Growth, 2014, vol. 396, pp. 79–84. https://doi.org/10.1016/j.jcrysgro.2014.03.038
  10. Pashchenko A. S., Devitsky O. V., Lunin L. S., Kasyanov I. V., Nikulin D. A., Pashchenko O. S. Structure and morphology of GaInAsP solid solutions on GaAs substrates grown by pulsed laser deposition. Thin Solid Films, 2022, vol. 743, article no. 139064. https://doi.org/10.1016/j.tsf.2021.139064
  11. Devitsky O. V. Peculiarities of pulsed laser deposition of thin InGaAsN films in an active background gas atmosphere. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2022, vol. 22, no. 6, pp. 1085–1091 (in Russian). https://doi.org/10.17586/2226-1494-2022-22-6-1085-1091
  12. Ma X. Y., Li D., Zhao Sh., Li G., Yang K. The electronic and optical properties of quaternary GaAs1−x−yNxBiy alloy lattice-matched to GaAs: A first-principles study. Nanoscale Research Letters, 2014, vol. 9, no. 1, article no. 580. https://doi.org/10.1186/1556-276X-9-580
  13. Kovalsky S. S., Denisov V. V., Ostroverkhov E. V., Prokop’ev V. E. Influence of the percentage of argon in the Ar–N2 gas mixture on the relative number of Ar+, N+2, N, and N+ particles in the plasma of a non-self-sustained low-pressure glow discharge with a hollow cathode. Russian Physics Journal, 2023, vol. 65, no. 11, pp. 1867–1874. https://doi.org/10.1007/s11182-023-02844-0
  14. Momma K., Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 2011, vol. 44, no. 6, pp. 1272–1276. https://doi.org/10.1107/S0021889811038970
  15. Xu Q., Fan W., Kuo J. L. The natural valence band offset of dilute GaAs1−xNx and GaAs: The first-principles approach. Computational Materials Science, 2010, vol. 49, no. 1, pp. 150–152. https://doi.org/10.1016/j.commatsci.2010.03.039
  16. Yoshimoto M., Huang W., Takehara Y., Saraie J., Chayahara A., Horino Y., Kunishige O. E. New semiconductor GaNAsBi alloy grown by molecular beam epitaxy. Japanese Journal of Applied Physics, 2004, vol. 43, no. 7A, pp. L845–L847. https://doi.org/10.1143/JJAP.43.L845
  17. Tixier S., Webster S. E., Young E. C., Tiedje T., Francoeur S., Mascarenhas A., Wei P., Schiettekatte F. Band gaps of the dilute quaternary alloys GaNxAs1−x−yBiy and Ga1−yInyNxAs1−x. Applied Physics Letters, 2005, vol. 86, no. 11, article no. 112113. https://doi.org/10.1063/1.1886254
  18. Broderick C. A., Usman M., O’Reilly E. P. Derivation of 12- and 14-band k·p hamiltonians for dilute bismide and bismide-nitride semiconductors. Semiconductor Science and Technology, 2013, vol. 28, no. 12, article no. 125025. https://doi.org/10.1088/0268-1242/28/12/125025

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».