Recrystallization of CaCO3 submicron magnetic particles in biological media

Cover Page

Cite item

Full Text

Abstract

Background and Objectives: The development of magnetic theranostics is associated with the determination of the behavior of magnetic carriers in biosimilar media. In this work, we analyze the formation of different crystalline phases from magnetic mineral submicron calcium carbonate particles during incubation under conditions of cell cultivation in vitro for 3 days. The study of mineralmagneticsubmicron particles recrystallization was analyzed by XRD and electron scanning microscopy. The shape of calcium carbonate particles begins to change from elliptical to spherical under cell culture cultivations. As the amount of magnetite nanoparticle particles in calcium carbonate increases, the recrystallization process is faster with fallout of calcite, vaterite and magnetite phases. Materials and Methods: Scanning electron microscopy, processing of results using a self-written Python code, XRDwere utilized in this study. Results: The study of the process of recrystallization of magnetic mineral particles shows has shown that increasing the content of magnetic carriers leads to accelerated recrystallization of particles with simultaneous precipitation of calcite, vaterite and magnetite phases. Conclusion: Magnetic mineral submicron calcium carbonate particles are promising targets for theranostics with the self-destruction property in biological environments.

About the authors

Alexandra E. Kalinova

Saratov State University

Email: skripalav@info.sgu.ru
410012, Russia, Saratov, Astrakhanskaya street, 83

Ludmila Ivanovna Kuznetsova

Saratov State University

Email: skripalav@info.sgu.ru
ORCID iD: 0009-0004-3999-031X
410012, Russia, Saratov, Astrakhanskaya street, 83

Arseni V. Ushakov

Saratov State University

Email: skripalav@info.sgu.ru
ORCID iD: 0000-0003-0495-7750
Scopus Author ID: 54409932500
ResearcherId: K-3318-2012
410012, Russia, Saratov, Astrakhanskaya street, 83

Maria A. Popova

Saratov State University

Email: skripalav@info.sgu.ru
410012, Russia, Saratov, Astrakhanskaya street, 83

Anatoliy A. Abalymov

Saratov State University

Email: skripalav@info.sgu.ru
ORCID iD: 0000-0002-3957-2706
Scopus Author ID: 57190869864
410012, Russia, Saratov, Astrakhanskaya street, 83

Polina A. Demina

Saratov State University

Email: skripalav@info.sgu.ru
ORCID iD: 0000-0002-9203-582X
Scopus Author ID: 37661275800
ResearcherId: E-9464-2019
410012, Russia, Saratov, Astrakhanskaya street, 83

Roman A. Anisimov

Saratov State University

Email: skripalav@info.sgu.ru
410012, Russia, Saratov, Astrakhanskaya street, 83

Maria V. Lomova

Saratov State University

Author for correspondence.
Email: skripalav@info.sgu.ru
ORCID iD: 0000-0002-7464-1754
410012, Russia, Saratov, Astrakhanskaya street, 83

References

  1. Liu D., Yang F., Xiong F., Gu N. The Smart Drug Delivery System and Its Clinical Potential. Theranostics, 2016, vol. 6, iss. 9, pp. 1306–1323. https://doi.org/10.7150/thno.14858
  2. Ferreira A. M., Vikulina A. S., Volodkin D. V. CaCO3 Crystals as Versatile Carriers for Controlled Delivery of Antimicrobials. J. Controlled Release, 2020, vol. 328, pp. 470–489. https://doi.org/10.1016/j.jconrel.2020.08.061
  3. Kelkar S. S., Reineke T. M. Theranostics: Combining Imaging and Therapy. Bioconjugate Chemistry, 2011, vol. 22, iss. 10, pp. 1879–1903. https://doi.org/10.1021/bc200151q
  4. Sharma D., Ali A. A. E., Trivedi L. R. An Updated Review On: Liposomes as Drug Delivery System. Pharmatutor, 2018, vol. 6, iss. 2, pp. 50–62. https://doi.org/10.29161/PT.v6.i2.2018.50
  5. Fadia P., Tyagi S., Bhagat S., Nair A., Panchal P., Dave H., Dang S., Singh S. Calcium Carbonate Nano- and Microparticles: Synthesis Methods and Biological Applications. 3 Biotech., 2021, vol. 11, pp. 1–30. https://doi.org/10.1007/s13205-021-02995-2
  6. Liendo F., Arduino M., Deorsola F. A., Bensaid S. Factors Controlling and Influencing Polymorphism, Morphology and Size of Calcium Carbonate Synthesized through the Carbonation Route: A Review. Powder Technol., 2022, vol. 398, no. 117050. https://doi.org/10.1016/j.powtec.2021.117050
  7. Goswami M. M., Dey C., Bandyopadhyay A., Sarkar D., Ahir M. Micelles Driven Magnetite (Fe3O4) Hollow Spheres and a Study on AC Magnetic Properties for Hyperthermia Application. Journal of Magnetism and Magnetic Materials, 2016, vol. 417, pp. 376–381. https://doi.org/10.1016/j.jmmm.2016.05.069
  8. Feoktistova N. A., Vikulina A. S., Balabushevich N. G., Skirtach A. G., Volodkin D. Bioactivity of Catalase Loaded into Vaterite CaCO3 Crystals via Adsorption and Co-Synthesis. Materials & Design, 2020, vol. 185, article no. 108223. https://doi.org/10.1016/j.matdes.2019.108223
  9. Wu C., Liu X., Yao F., Yang X., Wang Y., Hu W. Crystalline-Magnetism Action in Biomimetic Mineralization of Calcium Carbonate. Chinese Journal of Chemical Engineering, 2023, vol. 59, pp. 146–152. https://doi.org/10.1016/j.cjche.2023.01.004
  10. Ponomar V. Crystal Structures and Magnetic Properties of Spinel Ferrites Synthesized from Natural Fe–Mg– Ca Carbonates. Materials Research Bulletin, 2023, vol. 158, article no. 112068. https://doi.org/10.1016/j.materresbull.2022.112068
  11. Fakhrullin R. F., Bikmullin A. G., Nurgaliev D. K. Magnetically Responsive Calcium Carbonate Microcrystals. ACS Applied Materials & Interfaces, 2009, vol. 1, iss. 9, pp. 1847–1851. https://doi.org/10.1021/am9003864
  12. German S. V., Inozemtseva O. A., Markin A. V., Metvalli Kh., Khomutov G. B., Gorin D. A. Synthesis of Magnetite Hydrosols in Inert Atmosphere. Colloid Journal, 2013, vol. 75, iss. 4, pp. 483–486. https://doi.org/10.1134/S1061933X13040042
  13. Kozlova A. A., German S. V., Atkin V. S., Zyev V. V., Astle M. A., Bratashov D. N., Svenskaya Y. I., Gorin D. A. Magnetic Composite Submicron Carriers with Structure-Dependent MRI Contrast. Inorganics, 2020, vol. 8, iss. 2, article no. 11. https://doi.org/10.3390/inorganics8020011
  14. German S. V., Novoselova M. V., Bratashov D. N., Demina P. A., Atkin V. S., Voronin D. V., Khlebtsov B. N., Parakhonskiy B. V., Sukhorukov G. B., Gorin D. A. High-Efficiency Freezing-Induced Loading of Inorganic Nanoparticles and Proteins into Micron- and Submicron-Sized Porous Particles. Scientific Reports, 2018, vol. 8, iss. 1, article no. 17763. https://doi.org/10.1038/s41598-018-35846-x
  15. Atchudan R., Perumal S., Joo J., Lee Y. R. Synthesis and Characterization of Monodispersed Spherical Calcium Oxide and Calcium Carbonate Nanoparticles via Simple Pyrolysis. Nanomaterials, 2022, vol. 12, iss. 14, article no. 2424. https://doi.org/10.3390/nano12142424

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».