Arachidonic acid metabolites and cortical depression: From local to spatial model

Cover Page

Cite item

Full Text

Abstract

Background and Objectives: According to known experimental data, various metabolites of arachidonic acid have a vasoconstrictor or vasodilator effect, which in turn affects neuronal activity. The level of metabolite production can be influenced in several ways: by regulating oxygen levels or by glutamate-dependent increases in astrocytic calcium concentrations in response to neuronal activity. To analyze possible patterns of activity of nervous tissue in response to changes in the metabolic profile, a mathematical model was developed, within the framework of which computational experiments were carried out both in the local case and on spatial patterns. Materials and Methods: The work proposes a point model and its further extension for a spatially distributed system of connected neurogliovascular units. To test the performance of the model, we include an external influence leading to an increase in neuronal potassium and the occurrence of cortical depression, and an external influence on calcium activity, in order to analyze the influence of arachidonic acid metabolites on the process under study. Results: A new point model of the neurogliovascular unit has been developed that simulates the effect of arachidonic acid metabolites on cortical spreading depression, while expanding the point model to a spatially distributed case allowed us to determine the ways in which astrocytic activity influences the spatiotemporal characteristics of the wave of cortically spreading depression. Numerical studies of point and spatial models have confirmed the correspondence of the solutions to the observed experimental effects, including those associated with the peculiarities of the influence of arachidonic acid metabolites on the speed, area and lifetime of depression waves. It is assumed that in the future the results of the theoretical study can be used to find ways to return nervous tissue to the normal state from pathological conditions that occur with epilepsy, migraines and other neurodegenerative conditions associated with the occurrence of cortical depression waves. 

About the authors

Andrey Yu. Verisokin

Kursk State University

ORCID iD: 0000-0002-3655-7682
33 Radishcheva St., Kursk 35000, Russia

Darya V. Verveyko

Kursk State University

ORCID iD: 0000-0003-3661-3928
33 Radishcheva St., Kursk 35000, Russia

Alexey R. Brazhe

Lomonosov Moscow State University

ORCID iD: 0000-0002-1495-4652
Scopus Author ID: 9242162600
ResearcherId: G-9635-2016
119991, Russian Federation, Moscow, Leninskie gory, 1

References

  1. Koehler R. C., Gebremedhin D., Harder D. R. Role of astrocytes in cerebrovascular regulation // J. Appl. Physiol. 2006. Vol. 100. P. 307–317. https://doi.org/10.1152/japplphysiol.00938.2005
  2. Attwell D., Buchan A., Charpak S., Lauritzen M., MacVicar B. A., Newman E. Glial and neuronal control of brain blood flow // Nature. 2010. Vol. 468. P. 232–243. https://doi.org/10.1038/nature09613
  3. Zhenzhou L., McConnell H. L., Stackhouse T. L., Pike M. M., Zhang W., Mishra A. Increased 20-HETE signaling suppresses capillary neurovascular coupling after ischemic stroke in regions beyond the infarct // Front. Cell. Neurosci. 2021. Vol. 15. Article number 762843. https://doi.org/10.3389/fncel.2021.762843
  4. Gómez-Ramos A., Díaz-Nido J., Smith M. A., Perry G., Avila J. Effect of the lipid peroxidation product acrolein on tau phosphorylation in neural cells // J. Neurosci. Res. 2003. Vol. 71. P. 863–870. https://doi.org/10.1002/jnr.10525
  5. González A., Singh S. K., Churruca M., Maccioni R. B. Alzheimer’s Disease and Tau Self-Assembly: In the Search of the Missing Link // Int. J. Mol. Sci. 2022. Vol. 23, iss. 8. Article number 4192. https://doi.org/ijms23084192
  6. Yamazaki K., Vo-Ho V.-K., Bulsara D., Le N. Spiking Neural Networks and Their Applications: A Review // Brain Sciences. 2022. Vol. 12, iss. 7. Article number 863. https://doi.org/10.3390/brainsci12070863
  7. Manninen T., Havela R., Linne M. L. Computational Models for Calcium-Mediated Astrocyte Functions // Front. Comput. Neurosci. 2018. Vol. 12. Article number 14. https://doi.org/10.3389/fncom.2018.00014
  8. Huneau C., Benali H., Chabriat H. Investigating Human Neurovascular Coupling Using Functional Neuroimaging: A Critical Review of Dynamic Models // Front. Neurosci. 2015. Vol. 9. Article number 467. https://doi.org/10.3389/fnins.2015.00467
  9. Постнов Д. Э., Постнов Д. Д., Жирин Р. А. Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского. Моделирование колебательных и волновых процессов в двумерных средах произвольной геометрии на базе высокоскоростных параллельных вычислений на графических процессорных устройствах по технологии CUDA «AGEOM_CUDA». Свидетельство о государственной регистрации программы для ЭВМ № 2012610085 РФ от 10.01.2012.
  10. Ullah G., Jung P., Cornell-Bell A. H. Anti-phase calcium oscillations in astrocytes via inositol (1, 4, 5)-trisphosphate regeneration // Cell Calcium. 2006. Vol. 39. P. 197–208. https://doi.org/10.1016/j.ceca.2005.10.009
  11. Verisokin A. Yu., Verveyko D. V., Postnov D. E., Brazhe A. R. Modeling of astrocyte networks: Towards realistic topology and dynamics // Front. Cell. Neurosci. 2021. Vol. 15. Article number 645068. https://doi.org/10.3389/fncel.2021.645068
  12. Chizhov A. V., Zefirov A. V., Amakhin D. V., Smirnova E. Y., Zaitsev A. V. Minimal model of interictal and ictal discharges “Epileptor-2” // PLoS Comput. Biol. 2018. Vol. 14. Article number e1006186. https://doi.org/10.1371/journal.pcbi.1006186
  13. Cressman J. R., Ullah G., Ziburkus J., Schiff S. J., Barreto E. The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: I. Single neuron dynamics // J. Comput. Neurosci. 2009. Vol. 26, iss. 2. P. 159–170. https://doi.org/10.1007/s10827-008-0132-4
  14. MacVicar B. A., Newman E. A. Astrocyte regulation of blood flow in the brain // Cold Spring Harb. Perspect. Biol. 2015. Vol. 7. Article number a020388. https://doi.org/10.1101/cshperspect.a020388
  15. Volterra A., Liaudet N., Savtchouk I. Astrocyte Ca2+ signalling: An unexpected complexity // Nat. Rev. Neurosci. 2014. Vol. 15. P. 327–335. https://doi.org/10.1038/nrn3725
  16. Khakh B., Sofroniew M. Diversity of astrocyte functions and phenotypes in neural circuits // Nat. Neurosci. 2015. Vol. 18. P. 942–952. https://doi.org/10.1038/nn.4043
  17. Verkhratsky A., Nedergaard M. Physiology of Astroglia // Physiol. Rev. 2018. Vol. 98. P. 239–389. https://doi.org/10.1152/physrev.00042.2016

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».