Specific features of charge transfer fluctuations in disperse structures based on anatase nanoparticles near the percolation threshold

Cover Page

Cite item

Full Text

Abstract

Background and Objectives: Nanostructured dispersed semiconductor structures are of some interest as functional materials for modern chemoresistive sensing and photocatalytic chemistry. Among the promising semiconductor materials for such applications is, in particular, titanium dioxide in the modification of anatase. Despite a significant number of experimental and theoretical works devoted to the consideration of electrophysical properties of anatase nanophase and various structures based on it, the features of degradation of electrical conductivity of such systems with time are not fully investigated. The aim of this work was to analyze the behavior of the fluctuation component of the voltage drop on partially conducting systems of interelectrode bridges made of anatase nanoparticles under conditions of direct current flow in the quasi-stationary regime (with a slow increase in the voltage drop) and as it approaches the threshold of flow, characterized by a rapid increase in the voltage drop. Materials and Methods: Experimental studies of the charge transfer fluctuations in disperse structures near the percolation threshold were carried out using specially prepared samples consisting of densely packed titanium oxide nanoparticles (TiO2). The technique is based on the registration of time dependences of the voltage drop across the structures when a constant current flows through the system of anatase bridges. The behavior of fluctuation components during the measurement cycles was analyzed using moving estimates of the Hurst exponent of sample structural functions of intensity fluctuations. In addition to the sample values of the Hurst exponent, the sample normalized autocorrelation functions of the fluctuation component were calculated. To interpret the observed features, we propose a qualitative phenomenologicalmodel that considers the influence of random sequences of acts of blocking and soft breakdown of local conduction channels in the studied structures on the degradation of the effective ohmic conductivity of the structures. Results: It has been established that when approaching the threshold of percolation due to the depletion of the ensemble of free charge carriers (electrons) in bridges, there are qualitative changes in the dynamics of voltage drop fluctuations on bridge systems (in particular, a significant increase in the Hurst exponent of structural functions of voltage drop fluctuations, correlating with a sharp decline in the effective ohmic conductivity of the structures under study). “Soft” breakdowns of previously blocked local conduction channels may be due to the Poole – Frenkel effect, leading to the escape of trapped electrons into the conduction zone due to thermal fluctuations when the depth of traps decreases under the influence of an external electric field. Conclusion: The results obtained are of some interest from the point of view of further development of fundamental ideas about charge transfer mechanisms in dispersed semiconductor materials used in chemoresistive sensing and catalytic chemistry.

About the authors

Leonid Alekseevich Kochkurov

Yuri Gagarin State Technical University of Saratov

77, Politechnicheskaya str., Saratov, 410054, Russia

Dmitry V. Tsypin

Yuri Gagarin State Technical University of Saratov

ORCID iD: 0000-0001-6873-8018
77, Politechnicheskaya str., Saratov, 410054, Russia

Sergei Sergeevich Volchkov

Saratov Branch of the Institute of RadioEngineering and Electronics of Russian Academy of Sciences

ORCID iD: 0000-0002-3928-8836
Scopus Author ID: 57202159944
ResearcherId: B-7770-2018
38, Zelenaya Str., Saratov 410019, Russia

Dmitry Aleksandrovich Zimnyakov

Yuri Gagarin State Technical University of Saratov

77, Politechnicheskaya str., Saratov, 410054, Russia

References

  1. Witkiewicz Z., Jasek K., Grabka M. Semiconductor gas sensors for detecting chemical warfare agents and their simulants // Sensors. 2023. Vol. 23, iss. 6. Article number 3272. https://doi.org/10.3390/s23063272
  2. Qin Q., Olimov D., Yin L. Semiconductor-type gas sensors based on γ-Fe2O3 nanoparticles and its derivatives in conjunction with SnO2 and graphene // Chemosensors. 2022. Vol. 10, iss. 7. Article number 267. https://doi.org/10.3390/chemosensors10070267
  3. Diao F., Wang Y. Transition metal oxide nanostructures: premeditated fabrication and applications in electronic and photonic devices // J. of Materials Science. 2018. Vol. 53. P. 4334–4359. https://doi.org/10.1007/s10853-017-1862-3
  4. Sudarshan S., Das S., Ray S.K. Progress in groupIV semiconductor nanowires based photonic devices // Appl. Phys. A. 2023. Vol. 129, iss. 3. Article number 216. https://doi.org/10.1007/s00339-023-06483-7
  5. Terna A. D., Elemike E. E., Mbonu J. I., Osafile O. E., Ezeani R.O. The future of semiconductors nanoparticles: Synthesis, properties and applications // Materials Science and Engineering. 2021. Vol. 272. P. 115363. https://doi.org/10.1016/j.mseb.2021.115363
  6. Scanlon D. O., Dunnill C. W., Buckeridge J., Shevlin S. A., Logsdail A. J., Woodley S. M., Catlow C. R. A., Powell M. J., Palgrave R. G., Parkin I. P., Watson G. W., Keal T. W., Sherwood P., Walsh A., Sokol A. A. Band alignment of rutile and anatase TiO2 // Nature Materials. 2013. Vol. 12, iss. 9. P. 798–801. https://doi.org/10.1038/nmat3697
  7. Hanaor D. A. H., Sorrell C. C. Review of the anatase to rutile phase transformation // J. of Materials Science. 2011. Vol. 46. P. 855–874. https://doi.org/10.1007/s10853-010-5113-0
  8. Tang H., Lévy F., Berger H., Schmid P. E. Urbach tail of anatase TiO2 // Physical Review B. 1995. Vol. 52, iss. 11. P. 7771–7774. https://doi.org/10.1103/PhysRevB.52.7771
  9. Moser S., Fatale S., Krüger P., Berger H., Bugnon P., Magrez A., Niwa H., Miyawaki J., Harada Y., Grioni M. Electron-phonon coupling in the bulk of anatase TiO2 measured by resonant inelastic X-ray spectroscopy // Physical Review Letters. 2015. Vol. 115, iss. 9. P. 096404. https://doi.org/10.1103/PhysRevLett.115.096404
  10. Zimnyakov D. A., Volchkov S. S., Vasilkov M. Y., Plugin I. A., Varezhnikov A. S., Gorshkov N. V., Ushakov A. V., Tokarev A. S., Tsypin D. V., Vereshagin D. A. Semiconductor-to-Insulator Transition in Inter-Electrode Bridge-like Ensembles of Anatase Nanoparticles under a Long-Term Action of the Direct Current // Nanomaterials. 2023. Vol. 13, iss. 9. Article number 1490. https://doi.org/10.3390/nano13091490
  11. Зимняков Д. А., Волчков С. С., Варежников А. С., Васильков М. Ю., Плугин И. А. Особенности макроскопического транспорта зарядов в ансамблях плотноупакованных наночастиц анатаза вблизи порога протекания // Письма в журнал технической физики. 2023. Вып. 6. С. 21–24. https://doi.org/10.21883/PJTF.2023.06.54811.19414
  12. Кочкуров Л. А., Волчков С. С., Васильков М. Ю., Плугин И. А., Климова А. А., Зимняков Д. А. Деградация проводимости низкоразмерных наноструктурированных полупроводниковых слоев при длительном протекании постоянного тока // Известия Саратовского университета. Новая серия. Серия : Физика. 2024. Т. 24, вып. 1. С. 41–51. https://doi.org/10.18500/1817-3020-2024-24-1-41-51
  13. Федер Е. Фракталы : пер. с англ. 2-е изд. М. : УРСС ; Ленанд, 2014. 256 с. (Синергетика: от прошлого к будущему; № 69).
  14. Mercik S., Weron K. Stochastic origins of the long-range correlations of ionic current fluctuations in membrane channels // Physical Review E. 2001. Vol. 63, iss. 5. P. 051910. https://doi.org/10.1103/PhysRevE.63.051910
  15. Balcerek M., Burnecki K., Thapa S., Wyіomaсska A., Chechkin A. Fractional Brownian motion with random Hurst exponent: Accelerating diffusion and persistence transitions // Chaos: An Interdisciplinary Journal of Nonlinear Science. 2022. Vol. 32, № 9. P. 093114. https://doi.org/10.1063/5.0101913
  16. Kytin V., Dittrich T., Koch F., Lebedev E. Injection currents and effect of negative capacitance in porous TiO2 // Applied Physics Letters. 2001. Vol. 79, iss. 1. P. 108–110. https://doi.org/10.1063/1.1380241
  17. Dittrich T., Lebedev E. A., Weidmann J. Electron drift mobility in porous TiO2 anatase) // Physica Status Solidi A (Applied Research). 1998. Vol. 165, № 2. P. R5–R6. https://doi.org/10.1002/(SICI)1521-396X(199802)165:23.0.CO;2-9.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».