Influence of bending on the structural properties of crystallized silicon films on flexible substrates

Cover Page

Cite item

Full Text

Abstract

Background and Objectives: Silicon is the main semiconductor material used in many areas of human life. It is used in the creation of solar cells, various electronic devices, sensors etc. Also of particular interest is such an actively developing area as flexible electronics. It finds its application in the electronic devices. Thus, it becomes important to study ways to create polycrystalline films of semiconductor materials such as silicon on flexible substrates. The biggest problem with silicon crystallization on flexible substrates is that these substrates are low-melting, and traditional methods of silicon crystallization have an intense thermal effect on the crystallized material, which leads to destruction of the substrate. Materials and Methods: To create the samples, consecutive magnetron sputtering deposition of a silicon layer and then a tin layer onto a polyimide substrate was used. Silicon was crystallized using an infrared pulsed laser due to high absorption in tin layer. The structure of silicon during its bending deformation was studied using Raman spectroscopy. Results: As a result of the study, the sizes of silicon crystallites after crystallization, as well as the stresses in the films during bending, have been determined.

About the authors

Aleksey Aleksandrovich Serdobintsev

Saratov State University

ORCID iD: 0000-0003-3281-8352
Scopus Author ID: 7801334782
ResearcherId: D-9413-2013
410012, Russia, Saratov, Astrakhanskaya street, 83

Sergey Borisovich Venig

Saratov State University

ORCID iD: 0000-0002-4759-5828
410012, Russia, Saratov, Astrakhanskaya street, 83

Alexander V. Kozlowsky

Saratov State University

ORCID iD: 0000-0002-3612-9776
410012, Russia, Saratov, Astrakhanskaya street, 83

Larisa D. Volkovoynova

Saratov State University

ORCID iD: 0000-0001-6780-9865
410012, Russia, Saratov, Astrakhanskaya street, 83

References

  1. Sabatino M. D., Hendawi R., Garcia A. S. Silicon Solar Cells: Trends, Manufacturing Challenges, and AI Perspectives. Crystals, 2024, vol. 14, iss. 2, article no. 167. https://doi.org/10.3390/cryst14020167
  2. Lovett A. J., Daramalla V., Nayak D., Sayed F. N., Mahadevegowda A., Ducati C., Spencer B. F., Dutton S. E., Grey C. P., MacManus-Driscoll J. L. 3D Nanocomposite Thin Film Cathodes for Micro-Batteries with Enhanced High-Rate Electrochemical Performance over Planar Films. Advanced Energy Materials, 2023, vol. 13, iss. 38, article no. 2302053. https://doi.org/10.1002/aenm.202302053
  3. Feng L., Song S., Li H., He R., Chen S., Wang J., Zhao G., Zhao X. Nano-Biosensors Based on Noble Metal and Semiconductor Materials: Emerging Trends and Future Prospects. Metals, 2023, vol. 13, iss. 4, article no. 792. https://doi.org/10.3390/met13040792
  4. Sreejith S., Ajayan J., Kollem S., Sivasankari B. A Comprehensive Review on Thin Film Amorphous Silicon Solar Cells. Silicon, 2022, vol. 14, pp. 8277–8293. https://doi.org/10.1007/s12633-021-01644-w
  5. Kang H. Crystalline Silicon vs. Amorphous Silicon: The Significance of Structural Differences in Photovoltaic Applications. IOP Conf. Ser.: Earth Environ. Sci., 2021, vol. 726, article no. 012001. https://doi.org/10.1088/1755-1315/726/1/012001
  6. Dong X., Chen L., Su X., Wang Y., Xia Y. Flexible aqueous lithium-ion battery with high safety and large volumetric energy density. Angew Chem. Int. Ed. Engl., 2016, vol. 55, pp. 7474–7477. https://doi.org/10.1002/anie.201602766
  7. Cao Y., Zhang G., Zhang Y., Yue M., Chen Y., Cai S., Xie T., Feng X. Direct fabrication of stretchable electronics on a polymer substrate with process-integrated programmable rigidity. Adv. Funct. Mater., 2018, vol. 28, pp. 7474–7477. https://doi.org/10.1002/adfm.201804604
  8. Chortos A., Liu J., Bao Z. Pursuing prosthetic electronic skin. Nat. Mater., 2016, vol. 15, pp. 937–950. https://doi.org/10.1038/nmat4671
  9. Serdobintsev A. A., Kozhevnikov I. O., Starodubov A. V., Ryabukho P. V., Galushka V. V., Pavlov A. M. Thin amorphous silicon films crystallization upon flexible substrates. Phys. Status Solidi A, 2019, vol. 216, iss. 11, pp. 201–207. https://doi.org/10.1002/pssa.201800964
  10. Serdobintsev A. A., Kartashova A. M., Demina P. A., Volkovojnova L. D., Kozhevnikov I. O., Galushka V. V. Laser-stimulated metal-induced crystallization of silicon coatings on film and nanofiber polymer substrates. Technical Physics, 2024, vol. 69, iss. 3, pp. 469–477.
  11. Samohvalov F. A., Smirnov N. I., Rodionov A. A., Zamchij A. O., Baranov E. A., Shuhov Ju. G., Fedotov A. S., Starinskij S. V. Au-induced crystallization of non-stoichiometric amorphous silicon oxide initiated by nanosecond laser pulses. Thermophysics and Aeromechanics, 2023, no. 2, pp. 381–385 (in Russian).
  12. Vogt M. R. Development of physical models for the simulation of optical properties of solar cell modules. Hanover, Gottfried Wilhelm Leibniz University of Hanover, 2015. 154 p.
  13. Golovashkin A. I., Motulevich G. P. Optical and electrical properties of tin. Sov. Phys. JETP, 1964, vol. 19, pp. 310–317.
  14. French R. H., Rodríguez-Parada J. M., Yang M. K., Derryberry R. A., Lemon M. F., Brown M. J., Haeger C. R., Samuels S. L., Romano E. C., Richardson R. E. Optical properties of materials for concentrator photovoltaic systems. 34th IEEE Photovoltaic Specialists Conference (PVSC), 2009, vol. 34, pp. 000394–000399. https://doi.org/10.1109/PVSC.2009.5411657
  15. Volkovoynova L. D., Kozhevnikov I. O., Pavlov A. M., Serdobintsev A. A., Starodubov A. V. Heat transfer estimation during laser-assisted metal-induced crystallization of amorphous silicon films. Proceedings of 8th International Congress on Energy Fluxes and Radiation Effects (EFRE–2022), 2022, vol. 8, pp. 916–920. https://doi.org/10.56761/EFRE2022.C3-P-005701
  16. Terekhov V. A., Terukov E. I., Undalov Y. K., Barkov K. A., Kurilo N. A., Ivkov S. A., Nesterov D. N., Seredin P. V., Goloshchapov D. L., Minakov D. A., Popova E. V., Lukin A. N., Trapeznikova I. N. Effect of Plasma Oxygen Content on the Size and Content of Silicon Nanoclusters in Amorphous SiOx Films Obtained with Plasma-Enhanced Chemical Vapor Deposition. Symmetry, 2023, vol. 15, iss. 9, article no. 1800. https://doi.org/10.3390/sym15091800
  17. Reindl A., Aldabergenova S., Altin E., Frank G., Peukert W. Dispersing silicon nanoparticles in a stirred media mill – investigating the evolution of morphology, structure and oxide formation. Phys. Status Solidi A, 2007, vol. 204, iss. 7, pp. 2329–2338. https://doi.org/10.1002/pssa.200622557
  18. Volodin V. A., Sachkov V. A. Improved model of optical phonon confinement in silicon nanocrystals. Solids and Liquids, 2013, vol. 116, pp. 87–94. https://doi.org/10.7868/S0044451013010100
  19. McCarthy J., Perova T. S., Moore R. A., Bhattacharya S., Gamble H., Armstrong B. M. Composition and stress analysis in Si structures using micro-raman spectroscopy. Scanning, 2004, vol. 26, iss. 5, pp. 235–239 https://doi.org/10.1002/sca.4950260504
  20. Zhigunov D. M., Kamaev G. N., Kashkarov P. K., Volodin V. A. On Raman scattering cross section ratio of crystalline and microcrystalline to amorphous. Appl. Phys. Lett, 2018, vol. 113, iss. 5, article no. 023101. https://doi.org/10.1063/1.5037008
  21. Serdobintsev A. A., Veselov A. G., Kiryasova O. A., Portnov S. A., Bratashov D. N. Low-temperature plasma pulsed deposition of thin films with nanoscale periodicity of properties. Semiconductors, 2009, vol. 43, iss. 6, pp. 828–831. https://doi.org/10.1134/S106378260906027X
  22. Li X., Jin S., Zhang R., Gao Y., Liu Z., Yao Y., Wang Y., Wang X., Zhang Y., Tao X. The resolution and repeatability of stress measurement by Raman and EBSD in silicon. Vacuum, 2022, vol. 203, article no. 111276. https://doi.org/10.1016/j.vacuum.2022.111276
  23. Pogue V., Melkote S. N., Danyluk S. Residual stresses in multi-crystalline silicon photovoltaic wafers due to casting and wire sawing. Materials Science in Semiconductor Processing, 2018, vol. 75, pp. 173–182. https://doi.org/10.1016/j.mssp.2017.11.009
  24. Lengsfeld P., Nickel N. H., Genzel C., Fuhs W. Stress in undoped and doped laser crystallized poly-Si. Journal of Applied Physics, 2022, vol. 91, iss. 11, pp. 9128–9135. https://doi.org/10.1063/1.1476083

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».