Modeling and calculation of dispersed media flows in a channel with rapid expansion in the presence of nucleation, coagulation and phase transitions

Cover Page

Cite item

Full Text

Abstract

Background and Objectives: In practice, there are often processes in which in the initial state the working medium is single-phase, for example, in the form of gas (steam), and during the process under study conditions are created for the appearance of a new phase in the form of droplets (nuclei). The process of nucleation and further condensation growth of clusters in supersaturated vapor is one of the most important processes leading to the development of the dispersed phase. The liquid phase nuclei that appear as a result of nucleation are quite small (nano-sized) and, therefore, subject to Brownian wander, which leads to their mutual collisions and coagulation. The processes of evaporation and condensation in various media are used to obtain nanomaterials (in particular, in the synthesis of carbon nanotubes), as well as to obtain nano- and ultradisperse particles in expanding channels due to nucleation and their condensation and coagulation growth. Materials and Methods: Using a quasi-equilibrium model based on the equations of mechanics of multiphase media, the flow of a dispersed mixture in a channel with sudden expansion in the presence of processes of nucleation, coagulation of nuclei (clusters) and phase transitions (evaporation, condensation) in a two-dimensional formulation was studied. The homogeneous nucleation model is used to describe the nucleation process. It is assumed that the process of coagulation of clusters occurs due to their Brownian motion. To determine the rate of phase transitions, the Hertz – Knudsen – Langmuir formula is used. The problem of the flow of a gas-dispersed mixture in a channel with sudden expansion in a twodimensional formulation is considered. It was assumed that in the narrow part of the channel, under certain conditions, nuclei of the dispersed phase continuously appear, which enterthewidened part ofthe channelwiththe flow. The calculationswere carried out based onthe algorithm of the numerical “large particles” method, which is based on splitting the original equations into physical processes. Results: As a result of the study, the basic properties of the flow of a two-phase mixture in a channel in the presence of nucleation, coagulation and phase transitions have been established. It has been shown that the flow has a vortex structure, and the largest particles are formed precisely in the vortex zone. Calculations have established that the coagulation process has a fairly strong effect on the distribution of cluster sizes inside the channel. The influence of the degree of steam supercooling on the flow of the dispersed mixture in the channel has been studied and it has been found that this parameter significantly affects the density distribution of the dispersed phase. The flow pattern obtained using calculations is consistent with experiment. Conclusion: The basic properties of the behavior of the mixture parameters along the expanding channel at presence of nucleation, coagulation and phase transitions have been established. The results obtained can be useful in various areas of modern technology: when designing various heat-power and heat-exchange installations, for studying the process of outflow of various mixtures from containers, for modeling the processes of formation and growth of nuclei (in particular, nanoclusters) in saturated media, etc.

About the authors

Tulegen R. Amanbaev

Auezov South Kazakhstan University

ORCID iD: 0000-0002-6703-4008
5 Tauke khan Avenue, Shymkent 160012, Kazakhstan

Zhalgasbek D. Iztaev

Auezov South Kazakhstan University

5 Tauke khan Avenue, Shymkent 160012, Kazakhstan

Gamidulla E. Tilleuov

Auezov South Kazakhstan University

5 Tauke khan Avenue, Shymkent 160012, Kazakhstan

Nurislam A. Abdusaliev

Auezov South Kazakhstan University

5 Tauke khan Avenue, Shymkent 160012, Kazakhstan

References

  1. Нигматулин Р. И. Динамика многофазных сред : в 2 ч. М. : Наука, 1987. Ч. 1. 456 с.
  2. Zhang Y., Erkey C. Preparation of supported metallic nanoparticles using supercritical fluids: A review // J. Supercrit. Fluids. 2006. Vol. 38, iss. 2. P. 252–267. https://doi.org/10.1016/j.supflu.2006.03.021
  3. Weber M., Russell L. M., Debenedetti P. G. Mathematical modeling of nucleation growth formed by the rapid expansion of supercritical solution under subsonic conditions // J. Supercrit. Fluids. 2002. Vol. 23, iss. 1. P. 65–80. https://doi.org/10.1016/S0896-8446(01)00134-6
  4. Jun Li, Matos H. A., Gomes de Azevedo E. Two-phase homogenous model for particle formation gas saturated solution process // J. Supercrit. Fluids. 2004. Vol. 32, iss. 1–3. P. 275–286. https://doi.org/10.1016/j.supflu.2004.01.004
  5. Волков В. А., Муслаев А. В., Пирумов У. Г., Розовский П. В. Неравновесная конденсация паров металла в смеси с инертным газом при расширении в соплах установок для генерации кластерных пучков // Известия РАН. Механика жидкости и газа. 1995. № 3. С. 39–46.
  6. Волков В. А., Муслаев А. В., Розовский П. В. Численное моделирование неравновесной конденсации паров металла в сверхзвуковом сопле // Математическое моделирование. 1990. Т. 2, № 11. С. 56–63.
  7. Пирумов У. Г. Перспективные методы получения ультрадисперсных частиц в высоскоростных потоках // Проблемы машиностроения и надежности. 1996. № 1. С. 94–116.
  8. Аникеев В. И., Степанов Д. А., Ермакова А. Моделирование и расчет процесса быстрого расширения сверхкритического флюида с образованием наночастиц // Теоретические основы химической технологии. 2011. Т. 45, № 2. С. 155–169.
  9. Jung J., Perrut M. Particle design using supercritical fluids: Literature and patent survey // J. Supercrit. Fluids. 2001. Vol. 20, iss. 3. P. 179–219. https://doi.org/10.1016/S0896-8446(01)00064-X
  10. Amanbaev T. R., Tilleuov G. E., Zuparbekova A. Mathematical modeling of dispersed media flows in the presence of nucleation, coagulation and phase transitions // Bulletin of the Karaganda University. Physics Series. 2021. № 2. P. 14–24. https://doi.org/10.31489/2021ph2/14-24
  11. Тимошенко В. И. Квазигомогенная модель газодисперсных течений с химическими реакциями и фазовыми переходами // Докл. НАН Укр. 2018. № 2. С. 34–42. https://doi.org/10.15407/dopovidi2018.02.034
  12. Волощук В. М., Седунов Ю. С. Процессы коагуляции в дисперсных системах. Л. : Гидрометеоиздат, 1975. 351 с.
  13. Галкин В. А. Уравнение Смолуховского. М. : Физматлит, 2001. 336 с.
  14. Анисимов М. П. Нуклеация: теория и эксперимент // Успехи химии. 2003. Т. 72, № 7. С. 664–705. https://doi.org/10.1070/RC2003v072n07ABE H000761
  15. Karthika S., Radhakrishnan T. K., Kalaichelvi P. A review of classical and nonclassical nucleation theories // Crist. Growth Des. 2016. Vol. 16, № 11. P. 6663–6681. https://doi.org/10.1021/acs.cgd.6b00794
  16. Боровкова О. В., Восель С. В., Онищук А. А., Бакланов А. М., Фомин В. М. Экспериментальное изучение гомогенной нуклеации пересыщенного пара висмута. Оценка поверхностного натяжения критических зародышей // Доклады РАН. Физическая химия. 2013. Т. 449, № 1. С. 1–5. https://doi.org/10.7868/S0869565213070141
  17. Левашов В. Ю., Майоров В. О., Крюков А. П. Влияние гомогенной нуклеации на параметры пара вблизи поверхности испарения: упрощенный подход // Письма в ЖТФ. 2022. Т. 48, вып. 21. С. 6–9. https://doi.org/10.21883/PJTF.2022.21.53703.19342
  18. Белоцерковский О. М., Давыдов Ю. М. Метод крупных частиц в газовой динамике. М. : Наука, 1985. 365 с.
  19. Нигматулин Р. И., Ивандаев А. И., Губайдуллин А. А. Модифицированный метод «крупных частиц» для расчета нестационарных волновых процессов в многофазных дисперсных средах // Журн. вычисл. матем. и матем. физ. 1977. Т. 17, № 6. С. 1531–1544.
  20. Вукалович М. П., Ривкин С. Л., Александров А. А. Таблицы теплофизических свойств воды и водяного пара. М. : Изд-во стандартов, 1969. 654 с.
  21. Yamada H., Matsui T. Preliminary study of mutual slip-through of a pair of vortices // Phys. Fluids. 1978. Vol. 21. P. 292–294. https://doi.org/10.1063/1.862206
  22. Ван-Дайк M. Альбом течений жидкости и газа. M. : Мир, 1986. 184 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).