Experimental measurements of glucose concentration in blood with a prototype of optoacustic cytometer, assessment of measurement error

Cover Page

Cite item

Full Text

Abstract

Background and Objectives: Preclinical experimental measurements of blood glucose levels using the optoacoustic method were carried out. The purpose of the work is to record blood glucose levels using the optoacoustic method and obtain a graduated curve. It is necessary to establish the factors influencing the error in measuring blood glucose concentrations. Modern problems arising in the field of optoacoustic studies of blood composition are considered. Materials and Methods: A block diagram of the experimental setup has been developed and a prototype of the device has been created. Methods for collecting and storing blood are described. The process of experimental measurements is given. Experimental studies have been conducted on different age groups of patients with the addition of heparin to stop the clotting process. Results: The obtained profiles of acoustic signals have made it possible to plot the dependence of the amplitude of the acoustic signal in a blood sample on the concentration of glucose in the blood, and the measurement error has been assessed taking into account temperature and concentration factors that influence the result of measuring glucose levels. Conclusion: The prospects for using and comparing the obtained data for in vivo device development have been discussed. The diagnostic accuracy of the optoacoustic method is reduced due to biological variability and heterogeneous tissue composition.

About the authors

Denis Aleksandrovich Kravchuk

Southern Federal University

ORCID iD: 0000-0003-0656-8919
SPIN-code: 2826-3107
Scopus Author ID: 57200313806
ResearcherId: F-8436-2018
Russia, Rostov-on-Don, st. Bolshaya Sadovaya, 105/42

References

  1. Oraevsky A. A., Karabutov A. A. Optoacoustic tomography // Biomedical photonics : Handbook / Vo-Dinh T., ed. Boca Raton, FL : CRC Press, 2003. Chapter 34. P. 1–34. https://doi.org/10.1201/9780203008997
  2. Егерев С. В., Симановский Я. О. Оптоакустика неоднородных биомедицинских сред: конкуренция механизмов и перспективы применения (обзор) // Акуст. журн. 2022. Т. 68, № 1. С. 96–116. https://doi.org/10.31857/S0320791922010026
  3. Moldon P. A., Ermolinskiy P. B., Lugovtsov A. E., Timoshina P. A., Lazareva E. N., Surkov Yu. I., Gurfinkel Y. I., Tuchin V. V., Priezzhev A. V. Influence of optical clearing agents on the scattering properties of human nail bed and blood microrheological properties: In vivo and in vitro study // J. Biophotonics. 2024. Art. e202300524. https://doi.org/10.1002/JBIO.202300524
  4. Bi R., Dinish U. S., Goh Ch. Ch., Imai T., Moothanchery M., Li X., Kim J. Y., Jeon S., Pu Y., Kim Ch., Ng L. G., Wang L. V., Olivo M. In vivo label-free functional photoacoustic monitoring of ischemic reperfusion // J. Biophotonics. 2019. Vol. 12, № 7. Art. e201800454. https://doi.org/10.1002/jbio.201800454
  5. Girshick R., Donahue J., Darrell T., Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation // Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2014. P. 580–587. https://doi.org/10.1109/CVPR.2014.81
  6. Кравчук Д. А. Восстановление акустического сигнала при оптоакустическом взаимодействии для визуализации биологических тканей // Известия Юго-Западного государственного университета. Серия : Управление, вычислительная техника, информатика. Медицинское приборостроение. 2019. T. 9, № 1. С. 67–75.
  7. Wang G. A perspective on deep imaging // IEEE Access, 2016. Vol. 4. P. 8914–8924. https://doi.org/10.1109/ACCESS.2016.2624938
  8. Assi H., Cao R., Castelino M., Cox B., Gilbert F. J., Gröhl J., Gurusamy K., Hacker L., Ivory A. M., Joseph J., Knieling F., Leahy M. J., Lilaj L., Manohar S., Meglinski I., Moran C., Murray A., Oraevsky A. A., Pagel M. D., Pramanik M., Raymond J., Mithun K. A. S., Vogt W. C., Wang L., Yang S., Bohndiek S. E. A review of a strategic roadmapping exercise to advance clinical translation of photoacoustic imaging: From current barriers to future adoption // Photoacoustics. 2023. Vol. 32. Art. 100539. https://doi.org/10.1016/j.pacs.2023.100539
  9. Cai C., Nedosekin D. A., Menyaev Y. A., Sarimollaoglu M., Proskurnin M. A., Zharov V. P. Photoacoustic flow cytometry for single sickle cell detection in vitro and in vivo // Analytical Cellular Pathology. 2016. Vol. 2016, iss. 1. Art. 2642361. https://doi.org/10.1155/2016/2642361
  10. Menyaev Y. A., Nedosekin D. A., Sarimollaoglu M., Juratli M. A., Galanzha E. I., Tuchin V. V., Zharov V. P. Optical clearing in photoacoustic flow cytometry // Biomed. Opt. Express. 2013. Vol. 4, № 12. P. 3030–3041. https://doi.org/10.1364/BOE.4.003030
  11. Pearl W. G., Selvam R., Karmenyan A. V., Perevedentseva E. V., Hung S., Chang H. H., Shushunova N. A., Prikhozhdenko E. S., Bratashov D. N., Tuchin V. V., Cheng C. L. Berberine mediated fluorescent gold nanoclusters in biomimetic erythrocyte ghosts as a nanocarrier for enhanced photodynamic treatment // RSC Adv. 2024. Vol. 14, № 5. P. 3321–3334. https://doi.org/10.1039/d3ra08299g
  12. Гусев В. Э., Карабутов А. А. Лазерная оптоакустика. М. : Наука, 1991. 304 с.
  13. Дунина Т. А., Егерев, С. В., Лямшев, Л. М., Наугольных К. А. К нелинейной теории теплового механизма генерации звука лазерным излучением // Акуст. журн. 1979. Т. 25. С. 622–625.
  14. Savateeva E. V., Karabutov A. A., Solomatin S. V. Optical properties of blood at various levels of oxygenation studied by time-resolved detection of laser-induced pressure profiles // Proc. SPIE. Biomedical Optoacoustics III. 2002. Vol. 4618. P. 63–75. https://doi.org/10.1117/12.469849
  15. Yang L., Chen C., Zhang Z., Wei X. Glucose Determination by a Single 1535 nm Pulsed Photoacoustic Technique: A Multiple Calibration for the External Factors // J. Healthc. Eng. 2022. Vol. 2022. Art. 9593843. https://doi.org.10.1155/2022/9593843
  16. Ren Z., Liu G., Huang Z., Zhao D., Xiong Z. Exploration and Practice in Photoacoustic Measurement for Glucose Concentration Based on Tunable Pulsed Laser Induced Ultrasound // Int. J. Optomechatronics. 2015. Vol. 9, № 3. P. 221–237. https://doi.org/10.1080/15599612.2015.1051677
  17. Yadav J. R., Asha S., Vijander M., Bhaskar M. Prospects and limitations of non-invasive blood glucose monitoring using near-infrared spectroscopy // Biomed. Signal Process. Control. 2015. Vol. 18, № 1. P. 214–227. https://doi.org/10.1016/j.bspc.2015.01.005
  18. Quan K. M., Christison G. B., MacKenzie H. A., Hodgson P. Glucose determination by a pulsed photoacoustic technique: An experimental study using a gelatin-based tissue phantom // Phys. Med. Biol. 1993. Vol. 38, № 12. P. 1911–1922. https://doi.org/10.1088/0031-9155/38/12/014
  19. Jin H., Zheng Z., Liu S., Zhang R., Liao X., Liu S., Zheng Y. Pre-migration: A General Extension for Photoacoustic Imaging Reconstruction // IEEE Trans. Comput. Imaging. 2020. Vol. 6. P. 1097–1105. https://doi.org/10.1109/TCI.2020.3005479
  20. Prasad V. P. N. S. B. S., Syed A. H., Himansh M., Jana B., Mandal P., Sanki P. K. Augmenting authenticity for noninvasive in vivo detection of random blood glucose with photoacoustic spectroscopy using Kernel-based ridge regression // Sci. Rep. Nature Research. 2024. Vol. 14, № 1. Art. 8352. https://doi.org/10.1038/s41598-024-53691-z
  21. Кравчук Д. А. Результаты экспериментальных исследований оптоакустического отклика в биологических тканях и их моделях // Прикладная физика. 2022. T. 3, № 3. С. 63–66. https://doi.org/10.51368/1996-0948-2022-3-63-66
  22. Kravchuk D. A., Voronina K. A. Studies of red blood cell aggregation and blood oxygenation on the basis of the optoacoustic effect in biological media // J. Biomed. Photonics Eng. 2020. Vol. 6, № 1. P. 010307-1–010307-5. https://dx.doi.org/10.18287/JBPE20.06.010307
  23. Кравчук Д. А. Использование оптоакустического эффекта для измерения концентрации глюкозы // Прикладная физика. 2021. T. 6, № 3. С. 63–66. https://doi.org/10.51368/1996-0948-2021-6-63-66
  24. Kravchuk D. A., Starchenko I. B. Reconstruction of the Optical Acoustic Signal for Visualization of Biological Tissues // Physics and Mechamics of New Materials and Their Aplication. Processing of the International Conference PHENMA. 2021 / eds. I. A. Parinov, S. H. Chang. Springer Proceedings in Materials. Cham, Springer, 2021. Vol. 10. P. 473–479. https://doi.org/10.1007/978-3-030-76481-4_39

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).