Recovery of compartment model parameters of dynamical systems for the epidemiological SIR model

Cover Page

Cite item

Full Text

Abstract

Background and Objectives: In problems where the model of dynamical system is known and the parameters need to be determined, researchers most often encounter the problem of ”getting stuck” in local minima of the cost function. Most known methods do not guarantee finding the global minimum, although they increase the probability of finding it. A known method of avoiding local maxima, which consists of simultaneously using several cost functions that behave differently in the vicinity of local minima, detecting the minimum as local, in some cases does not find a way to leave the region of the local minimum of the cost function. In this paper, we propose an improvement in the latter method, which allows finding the global minimum with a higher probability. Materials and Methods: In this paper, 4 different error values were calculated at each iteration of the parameter selection algorithm. The parameter values were saved when at least one of the cost functions reaches a new minimum value. Both the parameters were varied, and the random choice between the saved sets of parameters corresponding to the smallest value of at least one of the cost functions was made, when the procedure is “getting stuck” in local minima. Results: An improved algorithm for estimating the values of control parameters of ordinary differential equation models has been presented. The method demonstrates good results in restoring the parameters of the considered dynamical system both in the case of steady-state solutions different from the equilibrium state and in the case of transient processes. Conclusion: As the results of numerical modeling using the described algorithm have shown, preserving several sets of parameters that correspond to the best values of error values allows us to avoid local minima of cost functions with a higher probability in the presence of noise.

About the authors

Mikhail A. Korobko

Saratov State University

ORCID iD: 0009-0004-5697-0329
410012, Russia, Saratov, Astrakhanskaya street, 83

Andrei Vladimirovich Bukh

Saratov State University

ORCID iD: 0000-0002-4786-6157
SPIN-code: 7104-5862
410012, Russia, Saratov, Astrakhanskaya street, 83

References

  1. Bocharov G. A., Rihan F. A. Numerical modelling in biosciences using delay differential equations. Journal of Computational and Applied Mathematics, 2000, vol. 125, no. 1–2, pp. 183–199. https://doi.org/10.1016/S0377-0427(00)00468-4
  2. Polynikis A., Hogan S. J., Di Bernardo M. Comparing different ODE modelling approaches for gene regulatory networks. Journal of Theoretical Biology, 2009, vol. 261, no. 4, pp. 511–530. https://doi.org/10.1016/j.jtbi.2009.07.040
  3. Miao H., Xia X., Perelson A. S., Wu H. On identifiability of nonlinear ODE models and applications in viral dynamics. SIAM Review, 2011, vol. 53, no. 1, pp. 3–39. https//doi.org/10.1137/090757009
  4. Dahlhoff E. P. Biochemical indicators of stress and metabolism: Applications for marine ecological studies. The Annual Review of Physiology, 2004, vol. 66, pp. 183–207. https://doi.org/10.1146/annurev.physiol.66.032102.114509
  5. McLean K. A. P., McAuley K. B. Mathematical modelling of chemical processes – obtaining the best model predictions and parameter estimates using identifiability and estimability procedures. The Canadian Journal of Chemical Engineering, 2012, vol. 90, no. 2, pp. 351–366. https://doi.org/10.1002/cjce.20660
  6. Boukouvala F., Hasan M. M. F., Floudas C. A. Global optimization of general constrained grey-box models: New method and its application to constrained PDEs for pressure swing adsorption. Journal of Global Optimization, 2017, vol. 67, pp. 3–42. https://doi.org/10.1007/s10898-015-0376-2
  7. Edsberg L., Wedin P. Å. Numerical tools for parameter estimation in ODE-systems. Optimization Methods and Software, 1995, vol. 6, no. 3, pp. 193–217. https://doi.org/10.1080/10556789508805633
  8. Bukh A. V., Kashtanova S. V., Shepelev I. A. Complex error minimization algorithm with adaptive change rate. Chaos, Solitons & Fractals, 2023, vol. 176, art. 114154. https://doi.org/10.1016/j.chaos.2023.114154
  9. Wright A. H. Genetic algorithms for real parameter optimization. Foundations of Genetic Algorithms, 1991, vol. 1, pp. 205–218. https://doi.org/10.1016/B978-0-08-050684-5.50016-1
  10. Dondelinger F., Husmeier D., Rogers S., Filippone M. ODE parameter inference using adaptive gradient matching with Gaussian processes. Journal of Machine Learning Research, 2013, vol. 31, pp. 216–228.
  11. Newton I. The Principia: Mathematical Principles of Natural Philosophy. Translation by I. Bernard Cohen and Anne Whitman. Berkeley, Univ. of California Press, 1999. 974 p.
  12. Fletcher R., Reeves C. M. Function minimization by conjugate gradients. The Computer Journal, 1964, vol. 7, no. 2, pp. 149–154. https://doi.org/10.1093/comjnl/7.2.149
  13. Martí R., Resende M. G. C., Ribeiro C. C. Multi-start methods for combinatorial optimization. European Journal of Operational Research, 2013, vol. 226, iss. 1, pp. 1–8. https://doi.org/10.1016/j.ejor.2012.10.012
  14. Mirjalili S., Jangir P., Saremi S. Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems. Applied Intelligence, 2017, vol. 46, pp. 79–95. https//doi.org/10.1007/s10489-016-0825-8
  15. Hu X., Shonkwiler R., Spruill M. C. Random restarts in global optimization. Georgia Institute of technology, Atlanta, GA, 1994. 32 p. Available at: https://www.researchgate.net/publication/40220792_Random_Restarts_in_Global_Optimization (accessed 20 September 2024).
  16. Goffe W. L., Ferrier G. D., Rogers J. Global optimization of statistical functions with simulated annealing. Journal of Econometrics, 1994, vol. 60, no. 1–2, pp. 65–99. https://doi.org/10.1016/0304-4076(94)90038-8
  17. Mirjalili S., Mirjalili S. M., Lewis A. Grey wolf optimizer. Advances in Engineering Software, 2014, vol. 69, pp. 46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007
  18. Trivedi I. N., Pradeep J., Narottam J., Arvind K., Dilip L. Novel adaptive whale optimization algorithm for global optimization. Indian Journal of Science and Technology, 2016, vol. 9, no. 3, pp. 319–326. https://doi.org/10.17485/ijst/2016/v9i38/101939
  19. Buch H., Trivedi I. N., Jangir P. Moth flame optimization to solve optimal power flow with non-parametric statistical evaluation validation. Cogent Engineering, 2017, vol. 4, no. 1, art. 1286731. https://doi.org/10.1080/23311916.2017.1286731
  20. Jangir P., Parmar S. A., Trivedi I. N., Bhesdadiya R. H. A novel hybrid particle swarm optimizer with multi verse optimizer for global numerical optimization and optimal reactive power dispatch problem. Engineering Science and Technology, an International Journal, 2017, vol. 20, no. 2, pp. 570–586. https://doi.org/1016/j.jestch.2016.10.007
  21. Jin Y., Wang W., Xiao S. An SIRS model with a nonlinear incidence rate. Chaos, Solitons & Fractals, 2007, vol. 34, no. 5, pp. 1482–1497. https://doi.org/10.1016/j.chaos.2006.04.022
  22. Barman M., Mishra N. Hopf bifurcation analysis for a delayed nonlinear-SEIR epidemic model on networks. Chaos, Solitons & Fractals, 2024, vol. 178, art. 114351. https://doi.org/10.1016/j.chaos.2023.114351
  23. Buonomo B., Giacobbe A. Oscillations in SIR behavioural epidemic models: The interplay between behaviour and overexposure to infection. Chaos, Solitons & Fractals, 2023, vol. 174, art. 113782. https://doi.org/10.1016/j.chaos.2023.113782

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».