Sensing using SERS-substrate and machine learning approaches

封面

如何引用文章

全文:

详细

Background and Objectives: Accurate and duly determination of glucose levels is critical for the diagnosis and control of diabetes. Recently, optical methods for glucose determination have become the subject of increased interest due to their potential cost-effectiveness, portability, and low invasiveness. Raman spectroscopy coupled with surface-enhanced Raman scattering (SERS) substrates demonstrates outstanding sensitivity through signal amplification and high specificity due to the unique vibrational spectra of target molecules. However, direct detection of glucose using SERS is complicated by the weak adsorption of glucose on metal surfaces and its low scattering cross section. Materials and Methods: Glucose sensors were constructed on the basis of polycaprolactone(PCL) scaffolds which have been modified using vaterite microparticles or filter paper (FP), both of which were then decorated with silver nanoparticle aggregates. The surface of the created substrates was assessed using scanning electron microscopy (SEM) on a MIRA II (Tescan, Czech Republic). To make the sensors specific for glucose detection, they were coated with a layer of glucose oxidase (GOx). To analyze the SERS spectra obtained as a result of measurements of aqueous solutions of glucose with various concentrations on sensors, classification models developed using the ensemble method RandomForestClassifier were used. Confusion matrices were obtained to assess the ratio of truly classified spectra. Results: Carrying out three cycles of modifying the surface of PCL fibers with microparticles of calcium carbonate leads to uniform overgrowth of the entire treated area. Additional immobilization of glucose oxidase (GOx) onto the surface of a matrix of PCL fibers with grown vaterite particles and a reduced layer of silver aggregates has provided selectivity for glucose detection when examining samples using SERS spectroscopy. The highest sensitivity in determining low glucose concentrations (1 mM) has been obtained for substrates with three sequential modifications of PCL fibers with vaterite and the reduction of aggregates of Ag nanoparticles from 5 M solutions of silver nitrate and ammonia hydrate with overall accuracy of 92.2%. Filter paper was considered as an alternative to using PCL-based scaffold. The reduction of silver was carried out without vaterite particles growth by varying the concentration of the reagents used (AgNO3, NH3·H2O). Sensors based on filter paper after the reduction of silver on the surface from salt solutions with concentrations of 2 M have shown overall accuracy of 90.2% and the ratio of truly classified 1 mM glucose solution of 88%. Conclusion: Increasing the number of cycles of sequential modification of the polycaprolactone surface with vaterite microparticles makes it possible to obtain a more uniform overgrowth, which was observed in SEM images, and, as a consequence, greater ratio of truly classified spectra at lower glucose concentrations. The PCL-based sensor (PCL/(CaCO3)3/Ag (5 M)) have outperformed FP/Ag (2 M) both with overall accuracy of classification (92.2% versus 90.2%) and 100% of truly classified spectra of 1 mM glucose solution.

作者简介

Victoria Bakal

Saratov State University

ORCID iD: 0009-0008-6956-6762
410012, Russia, Saratov, Astrakhanskaya street, 83

Olga Gusliakova

Saratov State University

ORCID iD: 0000-0001-8387-0711
SPIN 代码: 2642-9014
Scopus 作者 ID: 57202360091
Researcher ID: T-5616-2018
410012, Russia, Saratov, Astrakhanskaya street, 83

Ekaterina Prikhozhdenko

Saratov State University

ORCID iD: 0000-0003-2700-168X
SPIN 代码: 3258-1666
410012, Russia, Saratov, Astrakhanskaya street, 83

参考

  1. Shafer-Peltier K. E., Haynes C. L., Glucksberg M. R., Van Duyne R. P. Toward a glucose biosensor based on surface-enhanced Raman scattering. J. Am. Chem. Soc., 2003, vol. 125, iss. 2, pp. 588–593. https://doi.org/10.1021/ja028255v
  2. Sun X. Glucose detection through surface-enhanced Raman spectroscopy: A review. Anal. Chim. Acta, 2022, vol. 1206, art. 339226. https://doi.org/10.1016/j.aca.2021.339226
  3. Yang D., Afroosheh S., Lee J. O., Cho H., Kumar S., Siddique R. H., Narasimhan V., Yoon Y. Z., Zayak A. T., Choo H. Glucose sensing using surface-enhanced Raman-mode constraining. Anal. Chem., 2018, vol. 90, iss. 24, pp. 14269–14278. https://doi.org/10.1021/acs.analchem.8b03420
  4. Quyen T. T. B., Su W. N., Chen K. J., Pan C. J., Rick J., Chang C. C., Hwang B. J. Au@SiO2 core/shell nanoparticle assemblage used for highly sensitive SERS-based determination of glucose and uric acid. J. Raman Spectrosc., 2013, vol. 44, iss. 12, pp. 1671–1677. https://doi.org/10.1002/jrs.4400
  5. Sun X., Stagon S., Huang H., Chen J., Lei Y. Functionalized aligned silver nanorod arrays for glucose sensing through surface enhanced Raman. RSC Adv., 2014, vol. 4, iss. 45, pp. 23382–23388. https://doi.org/10.1039/C4RA02423K
  6. Pham X., Shim S., Kim T., Hahm E., Kim H., Rho W., Jeong D., Lee Y., Jun B. Glucose detection using 4-mercaptophenyl boronic acid-incorporated silver nanoparticles-embedded silica-coated graphene oxide as a SERS substrate. BioChip J., 2017, vol. 11, pp. 46–56. https://doi.org/10.1007/s13206-016-1107-6
  7. Wallace G. Q., Tabatabaei M., Zuin M. S., Workentin M. S., Lagugné-Labarthet F. A nanoaggregate-on-mirror platform for molecular and biomolecular detection by surface-enhanced Raman spectroscopy. Anal. Bioanal. Chem., 2016, vol. 408, pp. 609–618. https://doi.org/10.1007/s00216-015-9142-z
  8. Guo W., Hu Y., Wei H. Enzymatically activated reduction-caged SERS reporters for versatile bioassays. Analyst, 2017, vol. 142, iss. 13, pp. 2322–2326. https://doi.org/10.1039/C7AN00552K
  9. Fu C., Jin S., Oh J., Xu S., Jung Y. M. Facile detection of glucose in human serum employing silver-ion-guided surface-enhanced Raman spectroscopy signal amplification. Analyst, 2017, vol. 142, iss. 16, pp. 2887–2891. https://doi.org/10.1039/C7AN00604G
  10. Ju J., Liu W., Perlaki C. M., Chen K., Feng C., Liu Q. Sustained and cost effective silver substrate for surface enhanced Raman Spectroscopy based biosensing. Sci. Rep., 2017, vol. 7, iss. 1, art. 6917. https://doi.org/10.1038/s41598-017-07186-9
  11. Kwon J. A., Jin C. M., Shin Y., Kim H. Y., Kim Y., Kang T., Choi I. Tunable plasmonic cavity for label-free detection of small molecules. ACS Appl. Mater. Interfaces, 2018, vol. 10, iss. 15, pp. 13226–13235. https://doi.org/10.1021/acsami.8b01550
  12. Yonzon C. R., Haynes C. L., Zhang X., Walsh J. T., Van Duyne R. P. A glucose biosensor based on surface-enhanced Raman scattering: Improved partition layer, temporal stability, reversibility, and resistance to serum protein interference. Anal. Chem., 2004, vol. 76, iss. 1, pp. 78–85. https://doi.org/10.1021/ac035134k
  13. Chen Q., Fu Y, Zhang W, Ye S, Zhang H, Xie F, Gong L, Wei Z, Jin H., Chen J. Highly sensitive detection of glucose: A quantitative approach employing nanorods assembled plasmonic substrate. Talanta, 2017, vol. 165, pp. 516–521. https://doi.org/10.1016/j.talanta.2016.12.076
  14. Hu S., Jiang Y., Wu Y., Guo X., Ying Y., Wen Y., Yang H. Enzyme-free tandem reaction strategy for surface-enhanced Raman scattering detection of glucose by using the composite of Au nanoparticles and Porphyrin-based metal – organic framework. ACS Appl. Mater. Interfaces, 2020, vol. 12, iss. 49, pp. 55324–55330. https://doi.org/10.1021/acsami.0c12988
  15. Heang S., Park I. K., Kim J. M., Lee J. H. In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method. Biomaterials, 2007, vol. 28, iss. 9, pp. 1664–1671. https://doi.org/10.1016/j.biomaterials.2006.11.024
  16. Abedalwafa M., Wang F., Wang L., Li C. Biodegradable poly-epsilon-caprolactone (PCL) for tissue engineering applications: A review. Rev. Adv. Mater. Sci., 2013, vol. 34, iss. 2, pp. 123–140.
  17. Mayorova O. A., Saveleva M. S., Bratashov D. N., Prikhozhdenko E. S. Combination of machine learning and Raman spectroscopy for determination of the complex of whey protein isolate with hyaluronic acid. Polymers, 2024, vol. 16, iss. 5, art. 666. https://doi.org/10.3390/polym16050666
  18. Lussier F., Thibault V., Charron B.,Wallace G. Q., Masson J. F. Deep learning and artificial intelligence methods for Raman and surface-enhanced Raman scattering. TrAC, 2020, vol. 124, art. 115796. https://doi.org/10.1016/j.trac.2019.115796
  19. Ralbovsky N. M., Lednev I. K. Towards development of a novel universal medical diagnostic method: Raman spectroscopy and machine learning. Chem. Soc. Rev., 2020, vol. 49, iss. 20, pp. 7428–7453. https://doi.org/10.1039/D0CS01019G
  20. Saveleva M. S., Ivanov A. N Chibrikova J. A., Abalymov A. A., Surmeneva M. A., Surmenev R. A., Parakhonskiy B. P., Lomova M. V., Skirtach A. G., Norkin I. A. Osteogenic capability of vaterite-coated nonwoven polycaprolactone scaffolds for in vivo bone tissue regeneration. Macromol. Biosci., 2021, vol. 21, iss. 12, art. 2100266. https://doi.org/10.1002/mabi.202100266
  21. Prikhozhdenko E. S., Atkin V. S., Parakhonskiy B. V., Rybkin I. A., Lapanje A., Sukhorukov G. B., Gorin D. A., Yashchenok A. M. New post-processing method of preparing nanofibrous SERS substrates with a high density of silver nanoparticles. RSC Adv., 2016, vol. 6, iss. 87, pp. 84505–84511. https://doi.org/10.1039/C6RA18636J
  22. Baker L. B., Wolfe A. S. Physiological mechanisms determining eccrine sweat composition. Eur. J. Appl. Physiol., 2020, vol. 120, iss. 4, pp. 719–752. https://doi.org/10.1007/s00421-020-04323-7

补充文件

附件文件
动作
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».