Sensing using SERS-substrate and machine learning approaches
- 作者: Bakal V.A.1, Gusliakova O.I.1, Prikhozhdenko E.S.1
-
隶属关系:
- Saratov State University
- 期: 卷 25, 编号 2 (2025)
- 页面: 189-200
- 栏目: Biophysics and Medical Physics
- URL: https://journal-vniispk.ru/1817-3020/article/view/357303
- DOI: https://doi.org/10.18500/1817-3020-2025-25-2-189-200
- EDN: https://elibrary.ru/LPRHUT
- ID: 357303
如何引用文章
全文:
详细
作者简介
Victoria Bakal
Saratov State University
ORCID iD: 0009-0008-6956-6762
410012, Russia, Saratov, Astrakhanskaya street, 83
Olga Gusliakova
Saratov State University
ORCID iD: 0000-0001-8387-0711
SPIN 代码: 2642-9014
Scopus 作者 ID: 57202360091
Researcher ID: T-5616-2018
410012, Russia, Saratov, Astrakhanskaya street, 83
Ekaterina Prikhozhdenko
Saratov State University
ORCID iD: 0000-0003-2700-168X
SPIN 代码: 3258-1666
410012, Russia, Saratov, Astrakhanskaya street, 83
参考
- Shafer-Peltier K. E., Haynes C. L., Glucksberg M. R., Van Duyne R. P. Toward a glucose biosensor based on surface-enhanced Raman scattering. J. Am. Chem. Soc., 2003, vol. 125, iss. 2, pp. 588–593. https://doi.org/10.1021/ja028255v
- Sun X. Glucose detection through surface-enhanced Raman spectroscopy: A review. Anal. Chim. Acta, 2022, vol. 1206, art. 339226. https://doi.org/10.1016/j.aca.2021.339226
- Yang D., Afroosheh S., Lee J. O., Cho H., Kumar S., Siddique R. H., Narasimhan V., Yoon Y. Z., Zayak A. T., Choo H. Glucose sensing using surface-enhanced Raman-mode constraining. Anal. Chem., 2018, vol. 90, iss. 24, pp. 14269–14278. https://doi.org/10.1021/acs.analchem.8b03420
- Quyen T. T. B., Su W. N., Chen K. J., Pan C. J., Rick J., Chang C. C., Hwang B. J. Au@SiO2 core/shell nanoparticle assemblage used for highly sensitive SERS-based determination of glucose and uric acid. J. Raman Spectrosc., 2013, vol. 44, iss. 12, pp. 1671–1677. https://doi.org/10.1002/jrs.4400
- Sun X., Stagon S., Huang H., Chen J., Lei Y. Functionalized aligned silver nanorod arrays for glucose sensing through surface enhanced Raman. RSC Adv., 2014, vol. 4, iss. 45, pp. 23382–23388. https://doi.org/10.1039/C4RA02423K
- Pham X., Shim S., Kim T., Hahm E., Kim H., Rho W., Jeong D., Lee Y., Jun B. Glucose detection using 4-mercaptophenyl boronic acid-incorporated silver nanoparticles-embedded silica-coated graphene oxide as a SERS substrate. BioChip J., 2017, vol. 11, pp. 46–56. https://doi.org/10.1007/s13206-016-1107-6
- Wallace G. Q., Tabatabaei M., Zuin M. S., Workentin M. S., Lagugné-Labarthet F. A nanoaggregate-on-mirror platform for molecular and biomolecular detection by surface-enhanced Raman spectroscopy. Anal. Bioanal. Chem., 2016, vol. 408, pp. 609–618. https://doi.org/10.1007/s00216-015-9142-z
- Guo W., Hu Y., Wei H. Enzymatically activated reduction-caged SERS reporters for versatile bioassays. Analyst, 2017, vol. 142, iss. 13, pp. 2322–2326. https://doi.org/10.1039/C7AN00552K
- Fu C., Jin S., Oh J., Xu S., Jung Y. M. Facile detection of glucose in human serum employing silver-ion-guided surface-enhanced Raman spectroscopy signal amplification. Analyst, 2017, vol. 142, iss. 16, pp. 2887–2891. https://doi.org/10.1039/C7AN00604G
- Ju J., Liu W., Perlaki C. M., Chen K., Feng C., Liu Q. Sustained and cost effective silver substrate for surface enhanced Raman Spectroscopy based biosensing. Sci. Rep., 2017, vol. 7, iss. 1, art. 6917. https://doi.org/10.1038/s41598-017-07186-9
- Kwon J. A., Jin C. M., Shin Y., Kim H. Y., Kim Y., Kang T., Choi I. Tunable plasmonic cavity for label-free detection of small molecules. ACS Appl. Mater. Interfaces, 2018, vol. 10, iss. 15, pp. 13226–13235. https://doi.org/10.1021/acsami.8b01550
- Yonzon C. R., Haynes C. L., Zhang X., Walsh J. T., Van Duyne R. P. A glucose biosensor based on surface-enhanced Raman scattering: Improved partition layer, temporal stability, reversibility, and resistance to serum protein interference. Anal. Chem., 2004, vol. 76, iss. 1, pp. 78–85. https://doi.org/10.1021/ac035134k
- Chen Q., Fu Y, Zhang W, Ye S, Zhang H, Xie F, Gong L, Wei Z, Jin H., Chen J. Highly sensitive detection of glucose: A quantitative approach employing nanorods assembled plasmonic substrate. Talanta, 2017, vol. 165, pp. 516–521. https://doi.org/10.1016/j.talanta.2016.12.076
- Hu S., Jiang Y., Wu Y., Guo X., Ying Y., Wen Y., Yang H. Enzyme-free tandem reaction strategy for surface-enhanced Raman scattering detection of glucose by using the composite of Au nanoparticles and Porphyrin-based metal – organic framework. ACS Appl. Mater. Interfaces, 2020, vol. 12, iss. 49, pp. 55324–55330. https://doi.org/10.1021/acsami.0c12988
- Heang S., Park I. K., Kim J. M., Lee J. H. In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method. Biomaterials, 2007, vol. 28, iss. 9, pp. 1664–1671. https://doi.org/10.1016/j.biomaterials.2006.11.024
- Abedalwafa M., Wang F., Wang L., Li C. Biodegradable poly-epsilon-caprolactone (PCL) for tissue engineering applications: A review. Rev. Adv. Mater. Sci., 2013, vol. 34, iss. 2, pp. 123–140.
- Mayorova O. A., Saveleva M. S., Bratashov D. N., Prikhozhdenko E. S. Combination of machine learning and Raman spectroscopy for determination of the complex of whey protein isolate with hyaluronic acid. Polymers, 2024, vol. 16, iss. 5, art. 666. https://doi.org/10.3390/polym16050666
- Lussier F., Thibault V., Charron B.,Wallace G. Q., Masson J. F. Deep learning and artificial intelligence methods for Raman and surface-enhanced Raman scattering. TrAC, 2020, vol. 124, art. 115796. https://doi.org/10.1016/j.trac.2019.115796
- Ralbovsky N. M., Lednev I. K. Towards development of a novel universal medical diagnostic method: Raman spectroscopy and machine learning. Chem. Soc. Rev., 2020, vol. 49, iss. 20, pp. 7428–7453. https://doi.org/10.1039/D0CS01019G
- Saveleva M. S., Ivanov A. N Chibrikova J. A., Abalymov A. A., Surmeneva M. A., Surmenev R. A., Parakhonskiy B. P., Lomova M. V., Skirtach A. G., Norkin I. A. Osteogenic capability of vaterite-coated nonwoven polycaprolactone scaffolds for in vivo bone tissue regeneration. Macromol. Biosci., 2021, vol. 21, iss. 12, art. 2100266. https://doi.org/10.1002/mabi.202100266
- Prikhozhdenko E. S., Atkin V. S., Parakhonskiy B. V., Rybkin I. A., Lapanje A., Sukhorukov G. B., Gorin D. A., Yashchenok A. M. New post-processing method of preparing nanofibrous SERS substrates with a high density of silver nanoparticles. RSC Adv., 2016, vol. 6, iss. 87, pp. 84505–84511. https://doi.org/10.1039/C6RA18636J
- Baker L. B., Wolfe A. S. Physiological mechanisms determining eccrine sweat composition. Eur. J. Appl. Physiol., 2020, vol. 120, iss. 4, pp. 719–752. https://doi.org/10.1007/s00421-020-04323-7
补充文件

