Differences in the kinetics of optical clearing of healthy and diabetic head tissues
- 作者: Shanshool A.S.1, Lazareva E.N.1, Surkov Y.I.1, Ziaee S.1, Timoshina P.A.1, Serebryakova I.A.1, Tuchina D.K.1, Genina E.A.1, Tuchin V.V.1
-
隶属关系:
- Saratov State University
- 期: 卷 25, 编号 2 (2025)
- 页面: 201-210
- 栏目: Biophysics and Medical Physics
- URL: https://journal-vniispk.ru/1817-3020/article/view/357304
- DOI: https://doi.org/10.18500/1817-3020-2025-25-2-201-210
- EDN: https://elibrary.ru/JPMIFH
- ID: 357304
如何引用文章
全文:
详细
作者简介
Alaa Shanshool
Saratov State University
ORCID iD: 0000-0001-5064-1461
410012, Russia, Saratov, Astrakhanskaya street, 83
Ekaterina Lazareva
Saratov State University
ORCID iD: 0000-0002-9041-9846
SPIN 代码: 2928-3080
Scopus 作者 ID: 20436373600
Researcher ID: G-8109-2016
410012, Russia, Saratov, Astrakhanskaya street, 83
Yury Surkov
Saratov State University
ORCID iD: 0000-0001-6736-4480
SPIN 代码: 5034-7994
410012, Russia, Saratov, Astrakhanskaya street, 83
Saeed Ziaee
Saratov State University
ORCID iD: 0009-0000-7433-1935
410012, Russia, Saratov, Astrakhanskaya street, 83
Polina Timoshina
Saratov State University
ORCID iD: 0000-0003-4856-9522
SPIN 代码: 2205-9329
410012, Russia, Saratov, Astrakhanskaya street, 83
Isabella Serebryakova
Saratov State University
ORCID iD: 0000-0001-6285-9222
SPIN 代码: 9689-3947
Scopus 作者 ID: 57219427217
Researcher ID: AAN-8377-2020
410012, Russia, Saratov, Astrakhanskaya street, 83
Daria Tuchina
Saratov State University
ORCID iD: 0000-0003-0203-4979
SPIN 代码: 9952-5501
Scopus 作者 ID: 55795869700
Researcher ID: D-4728-2013
410012, Russia, Saratov, Astrakhanskaya street, 83
Elina Genina
Saratov State University
ORCID iD: 0000-0002-1223-1100
SPIN 代码: 7202-4364
Scopus 作者 ID: 57001258100
Researcher ID: D-4358-2013
410012, Russia, Saratov, Astrakhanskaya street, 83
Valery Tuchin
Saratov State University
ORCID iD: 0000-0001-7479-2694
SPIN 代码: 7929-3192
410012, Russia, Saratov, Astrakhanskaya street, 83
参考
- Tuchin V. V. Tissue Optics. Light Scattering Methods and Instruments for Medical Diagnostics. SPIE Press, 2015. 988 p. https://spie.org/Publications/Book/2175698
- Khalid M., Petroianu G., Adem A. Advanced glycation end-products and diabetes mellitus: Mechanisms and perspectives. Biomolecules, 2022, vol. 12, no. 4, art. 542. https://doi.org/10.3390/biom12040542
- Tuchina D. K., Bucharskaya A. B., Dyachenko (Timoshina) P. A., Dikht N. I., Terentyuk G. S., Tuchin V. V. Optical and structural properties of biological tissues under simulated diabetes mellitus. In: Dunaev A., Tuchin V., eds. Biomedical Photonics for Diabetes Research. Boca Raton, FL, CRC Press, 2022, pp. 1–31. https://www.routledge.com/Biomedical-Photonics-for-Diabetes-Research/Dunaev-Tuchin/p/book/9780367628307
- Quansah E., Shaik T. A., Çevik E., Wang X., Hoppener C., Meyer-Zedler T., Deckert V., Schmitt M., Popp J., Krafft C. Investigating biochemical and structural changes of glycated collagen using multimodal multiphoton imaging, Raman spectroscopy, and atomic force microscopy. Anal. Bioanal. Chem., 2023, vol. 415, no. 2, pp. 6257–6267. https://doi.org/10.1159/000448121
- Yokota M., Tokudome Y. The effect of glycation on epidermal lipid content, its metabolism and change in barrier function. Skin Pharmacol. Physiol. 2016, vol. 29, no. 5, pp. 231–242. https://doi.org/10.1159/000448121
- Oliveira L. R., Pinheiro M. R., Tuchina D. K., Timoshina P. A., Carvalho M. I., Oliveira L. M. Light in evaluation of molecular diffusion in tissues: Discrimination of pathologies. Adv. Drug Deliv. Rev., 2024, vol. 212, art. 115420. https://doi.org/10.1016/j.addr.2024.115420
- Gaar J., Rafea N., Margaret B. Enzymatic and non-enzymatic crosslinks found in collagen and elastin and their chemical synthesis. Org. Chem. Front., 2020, vol. 7, no. 1, pp. 2789–2814. https://doi.org/10.1039/d0qo00624f
- Gautieri A., Passini F. S., Silván U., Guizar-Sicairos M., Carimati G., Volpi P., Moretti M., Schoenhuber H., Redaelli A., Berli M., Snedeker J. G. Advanced glycation end-products: Mechanics of aged collagen from molecule to tissue. Matrix Biol., 2017, vol. 59, pp. 95–108. https://doi.org/10.1016/j.matbio.2016.09.001
- Mengstie M. A., Abebe E. C., Teklemariam A. B., Mulu A. T., Agidew M. M., Azezew M. T., Zewde E. A., Teshome A. A. Endogenous advanced glycation end products in the pathogenesis of chronic diabetic complications. Front. Mol. Biosci., 2022, vol. 9, art. 1002710. https://doi.org/10.3389/fmolb.2022.1002710
- Kim Y. Blood and Tissue advanced glycation end products as determinants of cardiometabolic disorders focusing on human studies. Nutrients, 2023, vol. 15, no. 8, art. 2002. https://doi.org/10.3390/nu15082002
- Feng W., Zhang C., Yu T., Zhu D. Quantitative evaluation of skin disorders in type 1 diabetic mice by in vivo optical imaging. Biomed. Opt. Express, 2019, vol. 10, pp. 2996–3008. https://doi.org/10.1364/BOE.10.002996
- Zharkikh E., Dremin V., Zherebtsov E., Dunaev A., Meglinski I. Biophotonics methods for functional monitoring of complications of diabetes mellitus. J. Biophotonics, 2020, vol. 13, art. e202000203. https://doi.org/10.1002/jbio.202000203
- Zhu J., Li D., Yu T., Zhu D. Optical angiography for diabetes-induced pathological changes in microvascular structure and function: An overview. J. Innov. Opt. Health Sci., 2022, vol. 15, art. 2230002. https://doi.org/10.1142/S1793545822300026
- Shirshin E., Cherkasova E. O., Tikhonova T., Berlovskaya E., Priezzhev A., Fadeev V. Native fluorescence spectroscopy of blood plasma of rats with experimental diabetes: identifying fingerprints of glucose-related metabolic pathways. J. Biomed. Opt., 2015, vol. 20, art. 051033. https://doi.org/10.1117/1.JBO.20.5.051033
- Islam M. S., du T. Loots. Experimental rodent models of type 2 diabetes: A review. Methods Find. Exp. Clin. Pharmacol., 2009, vol. 31, no. 4, pp. 249–261. https://doi.org/10.1358/mf.2009.31.4.1362513
- Physical Properties of Glycerine and Its Solutions. New York, Glycerine Producers’ Association, 1963. 17 p.
- Tuchina D. K., Bashkatov A. N., Genina E. A., Tuchin V. V. The effect of immersion agents on the weight and geometric parameters of myocardial tissue in vitro. Biophysics, 2018, vol. 63, pp. 791–797. https://doi.org/10.1134/S0006350918050238
补充文件

