Unmanned Vehicles: A Survey of Modern Simulators
- Autores: Makarov M.I1,2, Korgin N.A1, Pyzh’yanov A.A1
-
Afiliações:
- Trapeznikov Institute of Control Sciences, Russian Academy of Sciences
- Moscow Institute of Physics and Technology
- Edição: Nº 1 (2025)
- Páginas: 3-15
- Seção: Surveys
- URL: https://journal-vniispk.ru/1819-3161/article/view/351153
- ID: 351153
Citar
Texto integral
Resumo
Palavras-chave
Sobre autores
M. Makarov
Trapeznikov Institute of Control Sciences, Russian Academy of Sciences; Moscow Institute of Physics and Technology
Autor responsável pela correspondência
Email: maxim.i.makarov@gmail.com
Moscow, Russia
N. Korgin
Trapeznikov Institute of Control Sciences, Russian Academy of Sciences
Email: nkorgin@ipu.ru
Moscow, Russia
A. Pyzh’yanov
Trapeznikov Institute of Control Sciences, Russian Academy of Sciences
Email: ipu@isko.moe
Moscow, Russia
Bibliografia
- Karunakaran, D., Berrio, J.S., Worrall, S. Challenges of Testing Highly Automated Vehicles: A Literature Review // Proceedings of 2022 IEEE International Conference on Recent Advances in Systems Science and Engineering (RASSE). – Tainan, 2022. – P. 1–8. – doi: 10.1109/RASSE54974.2022.9989562
- Beringhoff, F., Greenyer, J., Roesener, C. Thirty-One Challenges in Testing Automated Vehicles: Interviews with Experts from Industry and Research // Proceedings of 2022 IEEE Intelligent Vehicles Symposium (IV). – Aachen, 2022. – P. 360–366. – doi: 10.1109/IV51971.2022.9827097
- Lou, G., Deng, Y., Zheng, X., et al. Testing of Autonomous Driving Systems: Where Are We and Where Should We Go? // Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering. – Singapore, 2022. – P. 31–43.
- Martinez, M., Sitawarin, C. Beyond Grand Theft Auto V for Training, Testing and Enhancing Deep Learning in Self-driving Cars. – arXiv:1712.01397, 2017. – DOI: https://doi.org/48550/arXiv.1712.01397
- Коргин Н.А., Мещеряков Р.В. Концепция проекта по созданию распределенной сети полигонов для отработки сценариев применения гетерогенных групп транспортных средств с электрическим приводом в сложных климатических и ландшафтных условиях // Труды 11-й Всероссийской научной конференции «Системный синтез и прикладная синергетика»: сборник научных трудов (п. Нижний Архыз, ССПС-2022). – Ростов н/Д.: Южный федеральный университет, 2022. – С. 197–202. [Korgin, N.A., Meshcheryakov, R.V. Kontseptsiya proekta po sozdaniyu raspredelennoi seti poligonov dlya otrabotki stsenariev primeneniya geterogennykh grupp transportnykh sredstv s ehlektricheskim privodom v slozhnykh klimaticheskikh i landshaftnykh usloviyakh. kh // Trudy 11-i Vserossiiskoi nauchnoi konferentsii «Sistemnyi sintez i prikladnaya sinergetikA»: sbornik nauchnykh trudov (p. Nizhnii Arkhyz, SSPS-2022). – Rostov n/D.: Yuzhnyi federal'nyi universitet, 2022. – P. 197–202. (In Russian)]
- Макаров М.И. Алгоритм локального планирования пути для объезда препятствий в путевых координатах // Проблемы управления. – 2024. – № 3. – С. 66–72. [Makarov, M.I. A local path planning algorithm for avoiding obstacles in the frenet frame // Control Sciences. – 2024. – No. 3. – P. 56–61.]
- Mitrohin, M.A., Alyaev, A.O., Lobanov, R.I., Semenkin, M.V. Investigation of the Influence of Lighting Objects Control Algorithms on the Characteristics of Road Traffic at Intersections // Transport Automation Research. – 2024. – No. 3. – P. 282–295.
- Lim, K.G., Lee, C.H., Chin, R.K., et al. SUMO Enhancement for Vehicular Ad Hoc Network (VANET) Simulation // Proceedings of 2017 IEEE 2nd International Conference on Automatic Control and Intelligent Systems (I2CACIS). – Kota Kinabalu, 2017. – P. 86–91.
- Barceló, J., Barceló, P., Casas, J., Ferrer, J.L. AIMSUN: New ITS Capabilities // Proc. Eur. ITS Conf. – Bilbao, Spain, 2001. – P. 1–10.
- Ghafarian, M., Watson, N., Mohajer, N., et al. A Review of Dynamic Vehicular Motion Simulators: Systems and Algorithms // IEEE Access. – 2023. – Vol. 11. – P. 36 331–36 348.
- Ziegler, S., Höpler, R. Extending the IPG CarMaker by FMI Compliant Units // Proceedings of 8th International Modelica Conference. – Dresden, 2011. – P. 779–784.
- TruckSim Overview. – URL: https://www.carsim.com/products/trucksim/index.php (дата обращения: 30.09.2024). [Accessed September 30, 2024.]
- Silva, I., Silva, H., Botelho, F., Pendao, C. Realistic 3D Simulators for Automotive: A Review of Main Applications and Features // Sensors. – 2024. – Vol. 24, no. 18. – Art. no. 5880.
- Li, Y., Yuan, W., Zhang, S., et al. Choose Your Simulator Wisely: A Review on Open-Source Simulators for Autonomous Driving // IEEE Transactions on Intelligent Vehicles. – 2024. – Vol. 9, iss. 5. – P. 4861–4876.
- Cantas, M.R., Guvenc, L. Customized Co-simulation Environment for Autonomous Driving Algorithm Development and Evaluation // arXiv:2306.00223, 2023. – DOI: https://doi.org/48550/arXiv.2306.00223
- Holen, M., Knausgard, K., Goodwin, M. An Evaluation of Autonomous Car Simulators and Their Applicability for Supervised and Reinforcement Learning // Proceedings of International Conference on Intelligent Technologies and Applications. – Grimstad, 2021. – P. 367–379.
- May, J., Poudel, S., Amdan, S., et al. Using the CARLA Simulator to Train a Deep Q Self-Driving Car to Control a Real-World Counterpart on a College Campus // Proceedings of 2023 IEEE International Conference on Big Data. – Sorrento, 2023. – P. 2206–2210.
- Tanmay, V.S., Chinmay, V.S., Ming, X. AutoDRIVE Simulator: A Simulator for Scaled Autonomous Vehicle Research and Education // Proceedings of the 2021 2nd International Conference on Control, Robotics and Intelligent System (CCRIS ’21). – Qingdao, 2021. – P. 1–5.
- Hanevold, M. Path Following Model Predictive Control of a Differential Drive UGV in Off-Road Terrain: Master of Informatics thesis. – Oslo: University of Oslo, 2022. – 88 p.
- Zheng, H., Smereka, J.M., Mikulski, D., et al. Bayesian Optimization Based Trust Model for Human Multi-robot Collaborative Motion Tasks in Offroad Environments // International Journal of Social Robotics. – 2023. – Vol. 15, no. 7. – P. 1181–1201.
- Koenig, N., Howard, A. Design and Use Paradigms for Gazebo, an Open-Source Multi-robot Simulator // Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). – Sendai, 2004. – Vol. 3. – P. 2149–2154.
- Dosovitskiy, A., Ros, G., Codevilla, F., et al. CARLA: An Open Urban Driving Simulator // Proceedings of Conference on Robot Learning. – Mountain View, 2017. – P. 1–16.
- Han, I., Park, D.H., Kim, K.J. A New Open-Source Off-road Environment for Benchmark Generalization of Autonomous Driving // IEEE Access. – 2021. – Vol. 9. – P. 136 071–136 082.
- Let’s go off-road! – URL: https://carla.org/2023/04/21/avl-off-road-simulation (дата обращения: 30.09.2024). [Accessed September 30, 2024.]
- Shah, S., Dey, D., Lovett, C., Kapoor, A. Airsim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles // Proceedings of the 11th International Conference on Field and Service Robotics. – Cham: Springer International Publishing, 2018. – P. 621–635.
- Jansen, W., Verreycken, E., Schenck, A., et al. COSYS-AIRSIM: A Real-Time Simulation Framework Expanded for Complex Industrial Applications // Proceedings of 2023 Annual Modeling and Simulation Conference (ANNSIM). – Hamilton, 2023. – P. 37–48.
- Richard, A., Kamohara, J., Uno, K., et al. Omnilrs: A Photorealistic Simulator for Lunar Robotics // Proceedings of 2024 IEEE International Conference on Robotics and Automation (ICRA). – Yokohama, 2024. – P. 16 901–16 907.
- Jacinto, M., Pinto, J., Patrikar, J., et al. Pegasus Simulator: An Isaac Sim Framework for Multiple Aerial Vehicles Simulation // Proceedings of 2024 International Conference on Unmanned Aircraft Systems (ICUAS). – Chania, 2024. – P. 917–922.
- Ellis, K., Zhang, H., Stoyanov, D., Kanoulas, D. Navigation among Movable Obstacles with Object Localization Using Photorealistic Simulation // Proceedings of 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). – Huntington Place, 2022. – P. 1711–1716.
- Zea, D., Toapanta, A., Perez, V.H. Intelligent and Autonomous Guidance through a Geometric Model for Conventional Vehicles // In: Innovation and Research: A Driving Force for Socio-Econo-Technological Development. – Cham: Springer International Publishing, 2020. – P. 78–93.
- Couceiro, M. S., Vargas, P. A., Rocha, R. P. Bridging the Reality Gap between the Webots Simulator and E-puck Robots // Robotics and Autonomous Systems. – 2014. – Vol. 62, no. 10. – P. 1549–1567.
- Zhang, C., Maga, A. M. An Open-Source Photogrammetry Workflow for Reconstructing 3D models // Integrative Organismal Biology. – 2023. – Vol. 5, no. 1. – Art no. obad024.
- OpenDroneMap + blender = Fun. – URL: https://smathermather.com/2019/12/30/opendronemap-blender-fun-part-2/ (дата обращения: 30.09.2024). [Accessed September 30, 2024].
- Амосов О.С., Амосова С.Г., Кулагин К.А. Моделирование виртуального полигона для отработки совместной навигации группы разнородных беспилотных аппаратов // Материалы 34-й конференции памяти выдающегося конструктора гироскопических приборов Н.Н. Острякова (Санкт-Петербург, 2024). – Санкт-Петербург, 2024. – С. 117–120. [Amosov, O.S., Amosova, S.G., Kulagin, K.A. Modelirovanie virtual'nogo poligona dlya otrabotki sovmestnoj navigacii grup-py raznorodnyh bespilotnyh apparatov // Materialy 34-j konferencii pamyati vydayushchegosya konstruktora giroskopiche-skih priborov N.N. Ostryakova (Sankt-Peterburg, 2024). – Saint Petersburg, 2024. – S. 117–120. (In Russian)]
- Dobrokvashina, A., Lavrenov, R., Bai, Y., et al. Servosila Engineer Crawler Robot Modelling in Webots Simulator //International Journal of Mechanical Engineering and Robotics Research. – 2022. – Vol. 11, no. 6. – P. 417–421.
- Trefilov, P., Kulagin, K., Mamchenko, M. Developing a Flight Mission Simulator in the Context of UAVs Group Control // Proceedings of 2020 13th International Conference “Management of Large-Scale System Sevelopment” (MLSD). – Moscow, 2020. – P. 1–4. – doi: 10.1109/MLSD49919.2020.9247692
- Базенков Н.И., Пыжьянов А.А. Система сбора данных для реконструкции движений мотоциклиста // XIV Всероссийское совещание по проблемам управления (ВСПУ-2024): сб. науч. тр. – М.: ИПУ РАН, 2024. – C. 1776–1280. [Bazenkov N.I., Pyzh'janov A.A. Sistema sbora dannyh dlja rekonstrukcii dvizhenij motociklista // XIV Vserossijskoe soveshhanie po problemam upravlenija (VSPU-2024): sb. nauch. tr. – Moscow, 2024. – S. 1776–1780. (In Russian)]
Arquivos suplementares



