Solving Complex Resource Management Problems: From Classical Optimization and Game Theory to Multi-Agent Technologies for Reaching Consensus
- Autores: Leonidov A.V1,2, Skobelev P.O3,4
-
Afiliações:
- Lebedev Physical Institute, Russian Academy of Sciences
- Moscow Institute of Physics and Technology
- Samara Federal Research Center, Russian Academy of Sciences
- Samara State Technical University
- Edição: Nº 2 (2025)
- Páginas: 14-26
- Seção: Surveys
- URL: https://journal-vniispk.ru/1819-3161/article/view/351199
- ID: 351199
Citar
Texto integral
Resumo
Sobre autores
A. Leonidov
Lebedev Physical Institute, Russian Academy of Sciences; Moscow Institute of Physics and Technology
Autor responsável pela correspondência
Email: leonidovav@lebedev.ru
P. Skobelev
Samara Federal Research Center, Russian Academy of Sciences; Samara State Technical University
Email: p.skobelev@kg.ru
Bibliografia
- Capitalizing on Complexity? Insights from the Global Chief Executive Officer Study. – USA: IBM, 2010. – 70 p. – URL: http://www-935.ibm.com/services/us/ceo/ceostudy2010/index.html (дата обращения 04.01.2025). [Accessed January 4, 2025].
- Skobelev, P., Trentesaux, D. Disruptions Are the Norm: Cyber-Physical Multi-Agent Systems for Autonomous Real Time Resource Management / In: Service Orientation in Holonic and Multi-agent Manufacturing, series “Studies in Computational Intelligence”. Ed. by T. Borangiu, D. Trentesaux, A. Thomas, et al. – Vol. 694. – Switzerland: Springer, 2017. – P. 287–294.
- GARTNER. Top Strategic Predictions for 2016 and Beyond: The Future Is a Digital Thing. – Stamford: Gartner, Inc., 2015. – URL: https://www.gartner.com/en/documents/3142020 (дата обращения 05.01.2025). [Accessed January 5, 2025].
- Perez, J.A., Deligianni, F., Ravi, D., Yang, G.-Z. Artificial Intelligence and Robotics. UK-RAS White Paper. – London: Imperial College, 2017. – 48 p. – URL: https://arxiv.org/pdf/1803.10813 (дата обращения 05.01.2025). [Accessed January 5, 2025].
- Rzevski, G., Skobelev, P. Managing Complexity. – London-Boston: WIT Press, 2014. – 216 p.
- Handbook of Scheduling: Algorithms, Models and Performance Analysis / Ed. by J. Y.-T. Leung. – London-New York: Chapman & Hall/CRC, 2004. – 1224 p.
- Vos, S. Meta-heuristics: The State of the Art. Local Search for Planning and Scheduling / In: Lecture Notes in Computer Science. Ed. by A. Nareyek. – Berlin: Springer-Verlag, 2001. – Vol. 2148. – P. 1–23.
- Binitha, S., Sathya, S.S. A Survey of Bio inspired Optimization Algorithms // International Journal of Soft Computing and Engineering. – 2012. – Vol. 2, iss. 2. – P. 137–151.
- Handbook of Constraint Programming / Ed. by F. Rossi, P. Van Beek, T. Walsh. – Amsterdam: Elsevier, 2006. – 978 p.
- Wooldridge, M. An Introduction to Multi-Agent Systems. – Hoboken: John Wiley & Sons, 2009. – 488 p.
- Shoham, Y., Leyton-Brown, K. Multi-agent Systems: Algorithmic, Game Theoretic and Logical Foundations. – Cambridge: Cambridge Univ. Press, 2009. – 483 p.
- Словохотов Ю.Л., Новиков Д.А. Распределенный интеллект мультиагентных систем. Ч. 1. Основные характеристики и простейшие формы // Проблемы управления. – 2023. – № 5. – С. 3–22. [Slovokhotov, Yu.L., Novikov, D.A. Distributed Intelligence of Multi-Agent Systems. Part I: Basic Features and Simple Forms // Control Sciences. – 2023. – No. 5. – P. 2–17.]
- Словохотов Ю.Л., Новиков Д.А. Распределенный интеллект мультиагентных систем. Ч. 2. Коллективный интеллект социальных систем // Проблемы управления. –2023. – № 6. – С. 3–21. [Slovokhotov, Yu.L., Novikov, D.A. Distributed Intelligence of Multi-Agent Systems. Part II: Collective Intelligence of Social Systems // Control Sciences. – 2023. – No. 6. – P. 2–17.]
- Davidsson, P., Persson, J., Holmgren, J. On the Integration of Agent-Based and Mathematical Optimization Techniques / In: Agent and Multi-Agent Systems: Technologies and Applications. KES-AMSTA 2007. Lecture Notes in Computer Science. Ed. by N.T. Nguyen, A. Grzech, R.G. Howlett, L.C. Jain. – Berlin, Heidelberg: Springer, 2007. – Vol. 4496. – P. 1–10.
- Shen, W., Norrie, D.H. Agent-Based Systems for Intelligent Manufacturing: A State-of-the-Art Survey // Knowledge and Information Systems. – 1999. – Vol. 1. – P. 129–156.
- Shen, W., Wang, L., Qi, H. Agent-Based Distributed Manufacturing Process Planning and Scheduling: A State-of-the-Art Survey // IEEE Transactions on Systems, Man and Cybernetics. – 2006. – Vol. 36. – P. 563–577.
- Quelhadj, D., Petrovich, S. A Survey of Dynamic Scheduling in Manufacturing Systems // Journal of Scheduling. – 2009. – Vol. 12. – P. 417–431.
- Barbati, M., Bruno, M., Genovese, A. Applications of Agent-Based Models for Optimization Problems: A Literature Review // Expert Systems with Applications. – 2012. – Vol. 39. – P. 6020–6028.
- Agnestis, A. Multiagent Scheduling Problems // INFORMS Tutorials on Operational Research. – 2014. – P. 151–170.
- Lin, G. Y.-J., Solberg, J.J. Intergated Shop Floor Control Using Autonomous Agents // IIE Transactions. – 1992. – Vol. 24. – P. 57–71.
- Frey, D., Nimis, J., Worn, H., Lockemann, P. Benchmarking and Robust Multi-agent-Based Production and Control // Engineering Applications of Artificial Intelligence. – 2003. – Vol. 16. – P. 307–320.
- Mes, M., van der Heijen, M., van Haarten, A. Comparison of Agent-Based Scheduling to Look-Ahead Heuristics for Real-Time Transportation Problems // European Journal of Operational Research. – 2007. – Vol. 181. – P. 59–75.
- Smith, R.G. The Contract Net Protocol: High-Level Communication and Control in a Distributed Problem Solver // IEEE Transactions on Computers. – 1980. – Vol. 29. – P. 1104–1113.
- Davis, R., Smith, R.G. Negotiation as a Metaphor for Distributed Problem Solving // Artificial Intelligence. – 1983. – Vol. 20. – P. 63–109.
- Reaidy, J., Masotte, P., Diep, D. Comparison of Negotiation Protocols in Dynamic Agent-Based Manufacturing Systems // International Journal of Production Economics. – 2006. – Vol. 99. – P. 117–130.
- Ferguson, D., Yemini, Y., Nikolaou, C. Microeconomic Algorithms for Load Balancing in Distributed Computer Systems // Proc. of the 8th International Conference on Distributed Computing Systems. – San Jose, 1988. – P. 491–499.
- Waldspurger, C.A., Hogg, T., Huberman, B.A., et al. Spawn: A Distributed Computational Economy // IEEE Transactions on Software Engineering. – 1992. – Vol. 18. – P. 103–117.
- Huberman, B.A., Hogg, T. Distributed Computation as an Economic System // Journal of Economic Perspectives. – 1995. – Vol. 9. – P. 141–152.
- Wang, J., Hong, Y., Xu J., et al. Cooperative and Competitive Multi-Agent Systems: From Optimization to Games // IEEE/CAA Journal of Automatica Sinica. – 2022. – Vol. 9. – P. 763–783.
- Renna, P. A Review of Game Theory Models to Support Production Planning, Scheduling, Cloud Manufacturing and Sustainable Production Systems // Designs. – 2024. – Vol. 8, iss. 2. – Art. no. 26.
- Yang, B., Johansson, M. Distributed Optimization and Games: A Tutorial Overview / In: Networked Control Systems. Lecture Notes in Control and Information Sciences. Ed. by A. Bemporad, M. Heemels, M. Johansson. – London: Springer, 2010. – Vol. 406. – P. 109–148.
- Madsen, J.R., Shamma, J.S. Game Theory and Distributed Control // Handbook of Game Theory and Applications. – 2015. – Vol. 4. – P. 861–899.
- Briand, C., Ngueveu, S.U., Sucha, P. Finding an Optimal Nash Equilibrium to the Multi-agent Scheduling Problem // Journal of Scheduling. – 2017. – Vol. 20. – P. 475–491.
- Agnetis, A., Briand, C., Ngueveu, S.U., Sucha, P. Price of Anarchy and Price of Stability in Multi-agent Project Scheduling // Annals of Operations Research. – 2020. – Vol. 285. – P. 97–119.
- Hogg, T., Huberman, B.A., Williams, C.P. Phase Transitions and the Search Problem // Artificial Intelligence. – 1996. – Vol. 81. – P. 1–15.
- Herroelen, W., De Reyck, B. Phase Transitions in Project Scheduling // Journal of the Operational Research Society. – 1999. – Vol. 50. – P. 148–156.
- Easley, D., Kleinberg, J. Networks, Crowds, and Markets: Reasoning about a Highly Connected World. – Cambridge: Cambridge University Press, 2010. – URL: http://www.cs.38. cornell.edu/home/kleinber/networks-book/ (дата обращения 06.01.2025.) [Accessed January 6, 2025].
- Wellman, M., Walsh, W.E., Wurman, P., Makkie-Mason, K. Auction Protocols for Decentralized Scheduling // Games and Economic Behavior. – 2001. – Vol. 35. – P. 291–303.
- Hall, N.G., Liu, Z. On Auction Protocols for Decentralized Scheduling // Games and Economic Behavior. – 2011. – Vol. 72. – P. 583–585.
- Chen, W., Maturana, F., Norrie, D.H. MetaMorph II: An Agent-Based Architecture for Distributed Intelligent Design and Manufacturing // Journal of Intelligent Manufacturing. – 2000. – Vol. 11. – P. 237–251.
- Munich, L. Schedule Situations and Their Cooperative Game Theoretic Representations // European Journal of Operational Research. – 2024. – Vol. 316. – P. 767–778.
- Cavalieri, S., Garetti, M., Macchi, M., Taisch, M. An Experimental Benchmarking of Two Multi-agent Architectures for Production Scheduling and Control // Computers in Industry. – 2000. – Vol. 43. – P. 139–152.
- Brennan, R.W., Norrie, D.H. Evaluating the Performance of Reactive Control Architectures for Manufacturing Production Control // Computers in Industry. – 2001. – Vol. 46. – P. 235–245.
- Messie, D., Oh, J.C. Cooperative Game Theory within Multi-agent Systems for Systems Scheduling // Proc. of the 4th International Conference on Hybrid Intelligent Systems (HIS'04). – Kitakyushu, Japan, 2004. – P. 166–171.
- Ramos, C. An Architecture and a Negotiation Protocol for the Dynamic Scheduling of Manufacturing Systems // Proc. of the 1994 IEEE International Conference on Robotics and Automation. – San Diego, 1994. – Vol. 4. – P. 3161–3166.
- Maturana, F., Shen, W., Norrie, D.H. MetaMorph: An Adaptive Agent-Based Architecture for Intelligent Manufacturing // International Journal of Production Research. – 1999. – Vol. 37. – P. 2159–2173.
- Paccagnan, D., Chandan, R., Marsden, J.R. Utility and Mechanism Design in Multi-agent Systems: An Overview // Annual Reviews in Control. – 2022. – Vol. 53. – P. 315–328.
- Brussel, H.V., Wyns, J., Valckenaers, P. Reference Architecture for Holonic Manufacturing Systems: PROSA // Computer in Industry. – 1998. – Vol. 37, no. 3. – P. 255–274.
- Bongaerts, L., Monostori, L., Mcfarlane, D., Kadar, B. Hierarchy in Distributed Shop Control // Computers in Industry. – 2000. – Vol. 43. – P. 123–137.
- Rabelo, R.J., Camarinha-Matos, L.M. Negotiation in Multi-agent Based Dynamic Scheduling // Robotics & Computer-Integrated Manufacturing. – 1994. – Vol. 11. – P. 303–309.
- Gou, L., Luh, P.B., Kyoya, Y. Holonic Manufacturing Scheduling: Architecture, Cooperation Mechanism, and Implementation // Computers in Industry. – 1998. – Vol. 37. – P. 213–231.
- Skobelev, P. Open Multi-agent Systems for Decision-Making Support // Avtometriya. – 2002. – No. 6. – P. 45–61.
- Скобелев П.О., Виттих В.А. Мультиагентные модели взаимодействия для построения сетей потребностей и возможностей в открытых системах // Автоматика и телемеханика. – 2003. – № 1. – С. 177–185. [Skobelev, P.O., Vittikh, V.A. Multiagent Interaction Models for Constructing the Needs-and-Means Networks in Open Systems // Automation and Remote Control. – 2003. – Vol. 64. – P. 162–169.]
- Vittikh, V., Skobelev, P. The Compensation Method of Agents Interactions for Real Time Resource Allocation // Avtometriya. – 2009. – No. 2. – P. 78–87.
- Skobelev, P. Multi-Agent Systems for Real Time Adaptive Resource Management / In: Industrial Agents: Emerging Applications of Software Agents in Industry. Ed. by P. Leitão, S. Karnouskos. – Amsterdam: Elsevier, 2015. – P. 207–230.
- Peretz-Andersson, E., Tabares, S., Mikalef, P., Parida, V. Artificial Intelligence Implementation in Manufacturing SMEs: A Resource Orchestration Approach // International Journal of Information Management. – 2024. – Vol. 77, no. 1. – Art. no. 102781. – doi: 10.1016/j.ijinfomgt.2024.102781
- Dwivedi, Y.K. et al. Artificial Intelligence (AI): Multidisciplinary Perspectives on Emerging Challenges, Opportunities, and Agenda for Research, Practice and Policy // International Journal of information management. – 2021. – Vol. 57. – Art. no. 101994.
- Yang, W., Li, W., Cao, Y., et al. An Information Theory Inspired Real-Time Self-Adaptive Scheduling for Production-Logistics Resources: Framework, Principle, and Implementation // Sensors. – 2020. – Vol. 20. – Art. no. 7007. – DOI: https://doi.org/10.3390/s20247007
- Mourtzis, D. Advances in Adaptive Scheduling in Industry 4.0 // Front. Manuf. Technol. – 2022. – Vol. 2. – Art. no. 937889. – doi: 10.3389/fmtec.2022.937889
- Leitão, P., Colombo, A., Karnouskos, S. Industrial Automation Based on Cyber-physical Systems Technologies: Prototype Implementations and Challenges // Computers in Industry. – 2016. – Vol. 81. – P. 11–25.
- Городецкий В.И., Ларюхин В.Б., Скобелев П.О. Концептуальная модель цифровой платформы для кибер-физического управления современными предприятиями. Часть I. Цифровая платформа и цифровая экосистема // Мехатроника, автоматизация, управление. – 2019. – T. 20, № 6. – С. 323–332. [Gorodeckij, V.I., Laryuhin, V.B., Skobelev, P.O. Konceptual'naya model' cifrovoj platformy dlya kiber-fizicheskogo upravleniya sovremennymi predpriyatiyami. Part I. Cifrovaya platforma i cifrovaya ekosistema // Mekhatronika, avtomatizaciya, upravlenie. – 2019. – Vol. 20, no. 6. – P. 323–332. (In Russian)]
- Rzevski, G., Skobelev, P., Zhilyaev, A. Emergent Intelligence in Smart Ecosystems: Conflicts Resolution by Reaching Consensus in Resource Management // Mathematics. – 2022. – Vol. 10, iss. 11. – Art. no. 1923.
- Galuzin, V., Galitskaya, A., Grachev, S., et al. The Autonomous Digital Twin of Enterprise: Method and Toolset for Knowledge-Based Multi-Agent Adaptive Management of Tasks and Resources in Real Time // Mathematics. – 2022. – Vol. 10, iss. 10. – Art. no. 1662.
- Грачев С.П., Жиляев А.А., Ларюхин В.Б. Методы и средства построения интеллектуальных систем для решения сложных задач адаптивного управления ресурсами в реальном времени // Автоматика и телемеханика. – 2021. – № 11. – С. 30–67. [Grachev, S.P., Zhilyaev, A.A., Laryukhin, V.B., et al. Methods and Tools for Developing Intelligent Systems for Solving Complex Real-Time Adaptive Resource Management Problems // Automation and Remote Control. – 2021. – Vol. 82, no. 11. – P. 1857–1885.]
- Skobelev, P.O., Borovik, S.Y. On the Way from Industry 4.0 to Industry 5.0: From Digital Manufacturing to Digital Society // Industry 4.0. – 2017. – Vol. 2, iss. 6. – P. 307–311.
Arquivos suplementares



