Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 72, № 1 (2017)

Article

Ultra-flat galaxies selected from RFGC catalog. III. Star formation rate

Melnyk O., Karachentseva V., Karachentsev I.

Аннотация

We examine the star formation properties of galaxies with very thin disks selected from the Revised FlatGalaxy Catalog (RFGC). The sample contains 333 ultra-flat galaxies (UFG) at high Galactic latitudes, |b| > 10◦, with a blue major angular diameter of a ≥ 1.'2, blue and red apparent axial ratios of (a/b)b > 10, (a/b)r > 8.5 and radial velocities within 10 000 kms−1. As a control sample for them we use a population of 722 more thick RFGC galaxies with (a/b)b > 7, situated in the same volume. The UFG distribution over the sky indicates them as a population of quite isolated galaxies.We found that the specific star formation rate, sSFRFUV, determined via the FUV GALEX flux, increases steadily from the early type to late type disks for both the UFG and RFGC–UFG samples, showing no significant mutual difference within each morphological type T. The population of UFG disks has the average HI-mass-to-stellarmass ratio by (0.25 ± 0.03) dex higher than that of RFGC–UFG galaxies. Being compared with arbitrary orientated disks of the same type, the ultra-flat edge-on galaxies reveal that their total HI mass is hidden by self-absorption on the average by approximately 0.20 dex.We demonstrate that using the robust stellar mass estimate via 〈B−K〉-color and galaxy type T for the thin disks, together with a nowaday accounting for internal extinction, yields their sSFR quantities definitely lying below the limit of −9.4 dex (yr−1). The collected observational data on UFG disks imply that their average star formation rate in the past has been approximately three times the current SFR. The UFG galaxies have also sufficient amount of gas to support their observed SFR over the following nearly 9 Gyrs.

Astrophysical Bulletin. 2017;72(1):1-15
pages 1-15 views

Stars with discrepant v sin i as derived from the Ca II 3933 and Mg II 4481 Å lines. VI. HD 199892 — an SB2 spectroscopic binary

Zverko J., Romanyuk I., Iliev I., Kudryavtsev D., Stateva I., Semenko E.

Аннотация

We analyzed the spectra of a well known SB1 binary HD199892 for which the projected rotational velocity v sin i, introduced in the literature, significantly differs when determined from the lines of Ca II at 3933 Å and ofMg II at 4481 Å. Contrary to the former findings, we discovered the signs of spectral lines of a companion star in the profile of Hβ as well as weak metallic lines in the high resolution high S/N spectra covering the most of the visual region. We estimated the secondary star to be a main sequence A4V star with a mass of 2.2M and derived its radial velocity which resulted in the mass of the primary M = 4.6M. Short sections of the spectra in the Mg II 4481 Å and Ca II 3933 Å regions are analyzed as well.

Astrophysical Bulletin. 2017;72(1):16-23
pages 16-23 views

Physical and geometrical parameters of CVBS. XII. FIN 350 (HIP 64838)

Al-Wardat M., Docobo J., Abushattal A., Campo P.

Аннотация

A complete astrophysical and dynamical study of the close visual binary system (CVBS) Finsen 350 (A7V + F0V), is presented. Beginning with the entire observational spectral energy distribution (SED) and the magnitude difference between the subcomponents, Al-Wardat’s complex method for analyzing CVBS was applied as a reverse method of building the individual and entire synthetic SEDs of the system. This was combined with Docobo’s analytic method to calculate the new orbits. Although possible short (approximately 9 years) and long period (of about 18 years) orbits could be considered taking into account the similar results of the stellar masses obtained for each of them (3.07 and 3.41 M, respectively), we confirmed that the short solution is correct. In addition, other physical, geometrical and dynamical parameters of this system such as the effective temperatures, surface gravity accelerations, absolute magnitudes, radii, the dynamical parallax, etc., are reported. The Main Sequence phase of both components with age around 0.79 Gyr is approved.

Astrophysical Bulletin. 2017;72(1):24-34
pages 24-34 views

Study of nonstationarity of the atmosphere of κ Cas. I. Variability of profiles of photospheric and He I wind lines

Rzaev A.

Аннотация

Temporal variations of radial velocities and line profiles in the spectrum of the supergiant κ Cas were investigated. Variability of radial velocities and profiles of photospheric lines Si III, OII, He I, H10–Hδ and wind lines He I λ 5875, 6678 Å ismainly caused by non-radial pulsations. For photospheric lines quasisinusoidal variabilities of the radial velocity were found. Temporal variability of radial velocity of the wind lines He I λ 5875, 6678 A˚ differ from each other and from the photospheric lines. Gamma velocities and amplitudes of radial velocity variability were determined. The amplitude of variability and the velocity of expansion increase from lower to upper layers of the atmosphere. Emission components are superimposed on the line profiles at positions about −135 ± 10.0, −20 ± 20 and 135 ± 10.0 kms−1 respectively. They are more obvious in the wind line profiles, although, there are signs of emissions also in the photospheric lines. Such a character of variability of all the lines in the κ Cas spectrum confirms its Be nature.

Astrophysical Bulletin. 2017;72(1):35-43
pages 35-43 views

Search for and study of photometric variability in magnetic white dwarfs

Valeev A., Antonyuk K., Pit N., Moskvitin A., Grauzhanina A., Gadelshin D., Kolesnikov S., Zhuzhulina E., Burlakova T., Galazutdinov G., Gutaev A., Zhuchkov R., Ikhsanova A., Zhukov D., Joshi A., Pandey J., Kholtygin A., Valyavin G.

Аннотация

We report the results of photometric observations of a number of magnetic white dwarfs in order to search for photometric variability in these stars. These V-band observations revealed significant variability in the classical highly magnetized white dwarf GRW+70◦8247 with a likely period from several days to several dozen days and a half-amplitude of about 0.m 04. Our observations also revealed the variability of the well-known white dwarf GD229. The half amplitude of its photometric variability is equal to about 0.m 005, and the likely period of this degenerate star lies in the 10–20 day interval. This variability is most likely due to the rotation of the stars considered.We also discuss the peculiarities of the photometric variability in a number of other white dwarfs. We present the updated “magnetic field–rotation period” diagram for the white dwarfs.

Astrophysical Bulletin. 2017;72(1):44-50
pages 44-50 views

Estimates of the radii, masses, and luminosities of LAMOST stars

Sichevskij S.

Аннотация

Based on the spectral observations of the LAMOST (DR2) survey, the radii, masses, and luminosities of 700 481 stars were estimated. These stars belong to spectral types A, F, G, and K, and have metallicities between −0.845 and 0.0. To determine the properties of the stars, we used up-to-date models of the stellar interior structure, computed with account for the stellar evolution rate and the initial mass function. The use of evolutionary estimates for two types of stars—with and without rotation—allowed us to account for the uncertainty associated with the lack of data on the rotation velocity of the stars under consideration. The obtained stellar radii, together with the photometric estimates of interstellar extinction and angular diameters can be used to study the dependence of interstellar extinction on distance as well as to estimate the stellar distances.

Astrophysical Bulletin. 2017;72(1):51-57
pages 51-57 views

Spectrum and physical conditions in microflare generation regions at decimeter-wave frequencies

Yasnov L., Bogod V., Gofman A., Stupishina O.

Аннотация

The event of March 11, 2011 was used to study decimeter-wave microflares (MF) in solar active regions. A theoretical interpretation has been proposed for the nature and generation mechanism of decimeter-waveMFs, which is based on an analysis of the phenomenon of double plasma resonance and subsequent transformation of upper hybrid waves when they interact with low-frequency plasma waves. It is shown that MFs should form in the active regions between magnetic fields of opposite direction, where magnetic-field strength reaches 100–150 G in the transition region. We report the spectral properties of MFs computed with the allowance for inverse bremsstrahlung and cyclotron absorption and for the increment of upper-hybrid waves. It is shown that the transition region is the most likely place of MF generation within the framework of the model of electron-density and temperature. It is also shown that within the framework of electron density and temperature model in the active region the most likely MF generation place in the solar atmosphere is the transition region. MFs were observed at frequencies from 1.036 to 1.306 Hz, which is consistent with model computations.

Astrophysical Bulletin. 2017;72(1):58-66
pages 58-66 views

Spectroscopic observations of the exoplanet WASP-32b transit

Grauzhanina A., Valyavin G., Gadelshin D., Baklanova D., Plachinda S., Antonyuk K., Pit N., Galazutdinov G., Valeev A., Burlakova T., Kholtygin A.

Аннотация

We present first results of spectroscopic observations of transiting exoplanets in the Special Astrophysical Observatory of the Russian Academy of Sciences with the Main Stellar Spectrograph of the 6-m BTA telescope. For the exoplanetWASP-32b, we detected a significant variation of intensity and equivalent width in the Hα spectral line of the parent star at the time of a transit. The equivalent width of the line during transit is by 8–10% larger than outside the planet passage. Residual intensity in the core of the line reveals the following tendency: the line is by 10–15% deeper inside transit than outside it. Observations with the long-slit spectrograph of the Crimean Astrophysical Observatory at the 2.6-m ZTSh telescope also showed a transit event in the Hα line, although, with a smaller amplitude and shape inverted in relation to the data from the 6-m telescope. While in the observations with the BTA the Hα line becomes deeper during the transit, in the ZTSh observations, the residual intensity of the Hα line decreases during the transit. Reducing and analysis of the archive data of WASP-32b observations with the HARPS spectrograph also confirm the Hα line modulation at the time of the transit. The observed data give evidence of the envelope in WASP-32b filling the Roche lobe and a comet-like tail of changing geometry and orientation relative to the observer. These changes determine different depths and shapes of the Hα spectral line at the time of transits.

Astrophysical Bulletin. 2017;72(1):67-72
pages 67-72 views

Predictions on the detection of the free-floating planet population with K2 and spitzer microlensing campaigns

Hamolli L., De Paolis F., Hafizi M., Nucita A.

Аннотация

The K2’s Campaign 9 (K2C9) by the Kepler satellite for microlensing observations towards the Galactic bulge started on April 7, 2016, and is going to last for about three months. It offers the first chance to measure the masses of members of the large population of the isolated dark low-mass objects further away in our Galaxy, free-floating planets (FFPs). Intentionally, this observational period of K2 will overlap with that of the 2016 Spitzer follow-up microlensing project expected to start in June, 2016. Therefore, for the first time it is going to be possible to observe simultaneously the same microlensing events from a ground-based telescope and two satellites. This will help in removing the two-fold degeneracy of the impact parameter and in estimating the FFP mass, provided that the angular Einstein ring radius ΘE is measured. In this paper we calculate the probability that a microlensing event is detectable by two or more telescopes and study how it depends on the mass function index of FFPs and the position of the observers on the orbit.

Astrophysical Bulletin. 2017;72(1):73-80
pages 73-80 views

Wide-field optical monitoring with Mini-MegaTORTORA (MMT-9) multichannel high temporal resolution telescope

Beskin G., Karpov S., Biryukov A., Bondar S., Ivanov E., Katkova E., Orekhova N., Perkov A., Sasyuk V.

Аннотация

We describe the properties of Mini-MegaTORTORA (MMT-9) nine-channel wide-field optical sky monitoring system with subsecond temporal resolution. This instrument can observe sky areas as large as 900 deg2, perform photometry in three filters close to Johnson BV R system and polarimetry of selected objects or areas with 100–300 deg2 sizes. The limiting magnitude of the system is up to V = 11m for 0.1 s temporal resolution, and reaches V = 15m in minute-long exposures. The system is equipped with a powerful computing facility and dedicated software pipeline allowing it to perform automatic detection, real-time classification, and investigation of transient events of different nature located both in the near- Earth space and at extragalactic distances. The objects routinely detected by MMT-9 include faint meteors and artificial Earth satellites.We discuss astronomical tasks that can be solved using MMT-9, and present the results of the first two years of its operation. In particular, we report the parameters of the optical flare detected on June 25, 2016, which accompanied the gamma-ray burst GRB160625B.

Astrophysical Bulletin. 2017;72(1):81-92
pages 81-92 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».