Role of Structural Stresses in the Thermodestruction of Supercoiled Cellulose Macromolecules after Nitration
- Authors: Stovbun S.V.1, Lomakin S.M.2, Shchegolikhin A.I.2, Skoblin A.A.1, Mel’nikov V.P.1
-
Affiliations:
- Semenov Institute of Chemical Physics
- Emanuel Institute of Biochemical Physics
- Issue: Vol 12, No 1 (2018)
- Pages: 36-45
- Section: Kinetics and Mechanism of Chemical Reactions. Catalysis
- URL: https://journal-vniispk.ru/1990-7931/article/view/200201
- DOI: https://doi.org/10.1134/S1990793117060100
- ID: 200201
Cite item
Abstract
Thermogravimetry is used to study the thermodestruction of nitrocellulose (NC) with various nitrogen contents at various heating rates. At high degrees of nitration and high heating rates of the sample, the reaction occurs in an explosion mode with a threshold of its weight loss depending on the temperature. To explain this behavior, it is assumed that the nitration of cellulose gives rise to structural stresses, which weaken the covalent bonds in it by ∼37 kJ/mol (at a nitrogen content of ∼13%). This process apparently involves two different mechanisms of weight loss during heating: (a) conventional thermal destruction of NC macromolecules through the rupture of covalent bonds (with k0 = 1013 s−1, E = 150.2 kJ/mol, and n = 1) at heating rates of up to 10 K/min and nitrogen content in NC of up to 9%; (b) Zhurkov’s thermofluctuational mechanism of the destruction of strained macromolecules, characterized by a sharp (threshold) dependence of the weight loss on the heating rate, which is operative at heating rates above ∼4 K/min and high (>13%) nitrogen contents and at 20 K/min and a low (∼9%) nitrogen content. Under conditions of rapid heating, ∼10–20 K/min, the work done by stressed states to overcome the potential barrier to the rupture of covalent bonds causes an increase in the decomposition rate by a factor of 2000. The observed threshold pattern of weight loss during the thermodestruction of NC explains the long-known critical dependence of the properties of NC used to manufacture propellants on small changes in the nitrogen content.
About the authors
S. V. Stovbun
Semenov Institute of Chemical Physics
Author for correspondence.
Email: s.stovbun@chph.ras.ru
Russian Federation, Moscow, 119991
S. M. Lomakin
Emanuel Institute of Biochemical Physics
Email: s.stovbun@chph.ras.ru
Russian Federation, Moscow, 119991
A. I. Shchegolikhin
Emanuel Institute of Biochemical Physics
Email: s.stovbun@chph.ras.ru
Russian Federation, Moscow, 119991
A. A. Skoblin
Semenov Institute of Chemical Physics
Email: s.stovbun@chph.ras.ru
Russian Federation, Moscow, 119991
V. P. Mel’nikov
Semenov Institute of Chemical Physics
Email: s.stovbun@chph.ras.ru
Russian Federation, Moscow, 119991
Supplementary files
