Numerical simulation of the interaction of a shock wave with a permeable deformable granulated layer

Cover Page

Cite item

Full Text

Abstract

The article presents a mathematical model that describes, in a one-dimensional approximation, the interconnected processes of unsteady deformation of flat permeable granular layers. The model consists of solid particles and wave processes in pore and surrounding gas. The model is based on nonlinear equations of dynamics of two interpenetrating continua. As interfacial forces, drag forces are taken into account when gas flows around ball particles and friction forces. The numerical solution of the equations is carried out according to the modified scheme of S. K. Godunov, adapted to the problems of the dynamics of interpenetrating media. The contact surfaces of pure gas with the porous granular layer and pore gas are the surface of the fracture of porosity and permeability. The numerical implementation of contact conditions is based on the solution of the problem of disintegration of a gap at a jump in porosity. Solutions are obtained for the effects of plane shock waves on a deformable granular layer. We study the transformation of waves passing through an elastoplastic granular layer with and without taking into account changes in the permeability of the layer. When solving problems, the dependence of the change in the permeability of a layer on its compression is used, which is also obtained numerically when modeling the compression of symmetric fragments of granular layers in a spatial setting. Numerical studies of the processes of nonlinear interaction of shock waves with deformable permeable granular layers have shown that the parameters of transmitted and reflected waves substantially depend on the degree of compression of the granular layers. Assessment of the protective properties of permeable barriers when exposed to strong shock waves should be carried out taking into account changes in their permeability due to deformation layers.

About the authors

Ivan A. Modin

Research Institute of Mechanics, National Research Lobachevsky State University of Nizhny Novgorod

Email: mianet@mail.ru
ORCID iD: 0000-0002-3561-4606
SPIN-code: 4839-8129
Scopus Author ID: 57192279101
ResearcherId: E-9088-2019
http://www.mathnet.ru/rus/person138504

Cand. Techn. Sci.; Researcher; Researcher; Lab. of Simulation of Physical and Mechanical Processes

Russian Federation, 23, korp. 6, pr. Gagarina, Nizhny Novgorod, 603022

Anatoliy V. Kochetkov

Research Institute of Mechanics, National Research Lobachevsky State University of Nizhny Novgorod

Author for correspondence.
Email: kochetkov@mech.unn.ru
ORCID iD: 0000-0001-7939-8207
SPIN-code: 9964-3450
Scopus Author ID: 23004869700
http://www.mathnet.ru/person32889

Dr. Phys. & Math. Sci.; Professor; Dept. of Theoretical, Computer and Experimental Mechanics; (Institute of Information Technology, Mathematics and Mechanics UNN)

Russian Federation, 23, korp. 6, pr. Gagarina, Nizhny Novgorod, 603022

Elena G. Glazova

Research Institute of Mechanics, National Research Lobachevsky State University of Nizhny Novgorod

Email: glazova@mech.unn.ru
ORCID iD: 0000-0003-4351-889X
SPIN-code: 5314-3012
Scopus Author ID: 55248346700
http://www.mathnet.ru/person163935

Cand. Phys. & Math. Sci.; Senior Researcher; Lab. of Dynamics of Multicomponent Media (Research Institute of Mechanics UNN)

Russian Federation, 23, korp. 6, pr. Gagarina, Nizhny Novgorod, 603022

References

  1. Gelfand B. E., Silnikov M. V. Fugasnye effekty vzryvov [The Explosive Effects of Explosions]. St. Petersburg, Poligon, 2002, 272 pp. (In Russian)
  2. Gel’fand B. E., Gubanov A. V., Timofeev E. I. Interaction of shock waves in air with a porous screen, Fluid Dyn., 1983, vol. 18, no. 4, pp. 561–566. https://doi.org/10.1007/BF01090621.
  3. Ben-Dor G., Britan A., Elperin T., et al. Mechanism of compressive stress formation during weak shock waves impact with granular materials, Experiments in Fluids, 1997, vol. 22, no. 6, pp. 507–518. https://doi.org/10.1007/s003480050078.
  4. Glam B., Igra O., Britan A., Ben-Dor G. Dynamics of stress wave propagation in a chain of photoelastic discs impacted by a planar shock wave; Part I, experimental investigation, Shock Waves, 2007, vol. 17, no. 1, pp. 1–14. https://doi.org/10.1007/s00193-007-0094-x.
  5. Ben-Dor G., Britan A., Elperin T., et al. Experimental investigation of the interaction between weak shock waves and granular layers, Experiments in Fluids, 1997, vol. 22, no. 5, pp. 432–443. https://doi.org/10.1007/s003480050069.
  6. Britan A., Ben-Dor G. Shock tube study of the dynamical behavior of granular materials, Int. J. Multiphase Flow, 2006, vol. 32, no. 5, pp. 623–642. https://doi.org/10.1016/j.ijmultiphaseflow.2006.01.007.
  7. Britan A., Ben-Dor G., Igra O., Shapiro H. Development of a general approach for predicting the pressure fields of unsteady gas flows through granular media, J. Appl. Phys., 2006, vol. 99, no. 9, 093519. https://doi.org/10.1063/1.2197028.
  8. Britan A., Elperin T., Igra O., Jiang J. P. Head-on collision of a planar shock wave with a granular layer, AIP Conf. Proc., 1997, vol. 370, no. 1, pp. 971–974. https://doi.org/10.1063/1.50571.
  9. Levy A., Ben-Dor G., Sorek S. Numerical investigation of the propagation of shock waves in rigid porous materials: development of the computer code and comparison with experimental result, J. Fluid Mech., 1996, vol. 324, pp. 163–179. https://doi.org/10.1017/S0022112096007872.
  10. Britan A., Ben-Dor G., Elperin T., Igra O., Jiang J. P. Gas filtration during the impact of weak shock waves on granular layers, Int. J. Multiphase Flow, 1997, vol. 23, no. 3, pp. 473–491. https://doi.org/10.1016/s0301-9322(96)00088-2.
  11. Sadd M. H., Shukla A., Mei H., Zhu C. Y. The effect of voids and inclusions on wave propagation in granular materials, In: Micromechanics and Inhomogeneity. New York, Springer, 1990, pp. 367–383. https://doi.org/10.1007/978-1-4613-8919-4_23.
  12. Britan A., Ben-Dor G., Igra O., Shapiro H. Shock waves attenuation by granular filters, Int. J. Multiphase Flow, 2001, vol. 27, no. 4, pp. 617–634. https://doi.org/10.1016/S0301-9322(00)00048-3.
  13. Al’tshuler L. V., Kruglikov B. S. Attenuation of strong shock waves in two-phase and heterogeneous media, J. Appl. Mech. Tech. Phys., 1984, vol. 25, no. 5, pp. 672–676. https://doi.org/10.1007/BF00909366.
  14. Gubaidullin A. A., Dudko D. N., Urmancheev S. F. Modeling of the interaction between an air shock wave and a porous screen, Combust. Explos. Shock Waves, 2000, vol. 36, no. 4, pp. 496–505. https://doi.org/10.1007/BF02699481.
  15. Boldyreva O. Yu., Gubaidullin A. A., Dudko D. N., Kutushev A. G. Numerical study of the transfer of shock-wave loading to a screened flat wall through a layer of a powdered medium and a subsequent air gap, Combust. Explos. Shock Waves, 2007, vol. 43, no. 1, pp. 114–123. https://doi.org/10.1007/s10573-007-0016-3.
  16. Kochetkov A. V., Leont’ev N. V., Modin I. A., Savikhin A. O. Study of the stress-strain and strength properties of the metal woven grids, Vestnik Tomskogo Gosudarstvennogo Universiteta, Matematika i Mekhanika [Tomsk State University Journal of Mathematics and Mechanics], 2018, no. 52, pp. 53–62 (In Russian). https://doi.org/10.17223/19988621/52/6.
  17. Bragov A. M., Zhegalov D. V., Konstantinov A. Yu., Kochetkov A. V., Modin I. A., Savikhin A. O. Experimental study of deformation properties of a package of woven metal mesh under dynamic and quasi-static stressing, PNRPU Mechanics Bulletin, 2016, no. 3, pp. 252–262 (In Russian). https://doi.org/10.15593/perm.mech/2016.3.17.
  18. Balandin V. V., Kochetkov A. V., Krylov S. V., Modin I. A. Numerical and experimental study of the penetration of a package of woven metal grid by a steel ball, J. Phys.: Conf. Ser., 2019, vol. 1214, 012004. https://doi.org/10.1088/1742-6596/1214/1/012004.
  19. Modin I. A., Kochetkov A. V., Leontiev N. V. Numerical simulation of quasistatic and dynamic compression of a granular layer, AIP Conf. Proc., 2019, vol. 2116, 270003. https://doi.org/10.1063/1.5114277.
  20. Igumnov L. A., Kazakov D. A., Shishulin D. N., Modin I. A., Zhegalov D. V. Experimental studies of high-temperature creep of titanium alloy VT6 under conditions of a complex stress state under the influence of an aggressive medium, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2021, vol. 25, no. 2, pp. 286–302 (In Russian). https://doi.org/10.14498/vsgtu1850.
  21. Telegin S. V., Kirillova N. I., Modin I. A., Suleimanov E. V. Effect of particle size distribution on functional properties of Ce 0.9 Y 0.1 O 2−d ceramics, Ceramics Intern., 2021, vol. 47, no. 12, pp. 17316–17321. https://doi.org/10.1016/j.ceramint.2021.03.043.
  22. Kochetkov A. V., Modin I. A., Poverennov E. Y. Numerical study of elastoplastic dynamic compression of metal braided grid, AIP Conf. Proc., 2021, vol. 2371, 050005. https://doi.org/10.1063/5.0060905.
  23. Glazova E. G., Kochetkov A. V. Numerical simulation of interaction of deformable gaspermeable packets of grids with shock waves, J. Appl. Mech. Tech. Phys., 2012, vol. 53, no. 3, pp. 316–323. https://doi.org/10.1134/S0021894412030029.
  24. Kochetkov A. V., Leont’ev N. V., Modin I. A. Deformational properties of a filling layer of lead balls, Problems of Strength and Plasticity, 2017, vol. 79, no. 4, pp. 413–424 (In Russian). https://doi.org/10.32326/1814-9146-2017-79-4-413-424.
  25. Yaushev I. K. Decay of an arbitrary discontinuity in a channel with a jump in the crosssectional area, In: Izv. Sibirsk. Otdel. Akad. Nauk SSSR. Tekhn. Nauki, no. 8, issue 2, 1967, pp. 109–120 (In Russian).
  26. Kraiko A. F., Miller L. G., Shirkovskii I. A. Gas flow in a porous medium with porosity discontinuity surfaces, J. Appl. Mech. Tech. Phys., 1982, vol. 23, no. 1, pp. 104–110. https://doi.org/10.1007/BF00911987.
  27. Dulov V. G., Lukyanov G. A. Gazodinamika protsessov istecheniia [Gas Dynamics of Processes of the Expiration]. Novosibirsk, Nauka, 1984, 234 pp. (In Russian)
  28. Godunov S. K., Zabrodin A. V., Ivanov M. Ya., Kraiko A. N. Prokopov G. P. Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki [Numerical solution of multidimensional problems of gas dynamics]. Moscow, Nauka, 1976, 400 pp. (In Russian)
  29. Bragov A. M., Konstantinov A. U., Kochetkov A. V., Modin I. A., Savikhin A. O. Experimental study of deformation properties of a bulk layer from plumbum balls under dynamic and quasistatic loading, PNRPU Mechanics Bulletin, 2017, no. 4, pp. 16–27 (In Russian). https://doi.org/10.15593/perm.mech/2017.4.02.
  30. Kochetkov A. V., Leontiev N. V., Modin I. A., Turygina I. A., Chekmarev D. T. Numerically modeling deformation of a granular bed loaded in compression, Problems of Strength and Plasticity, 2018, vol. 80, no. 3, pp. 359–367 (In Russian). https://doi.org/10.32326/1814-9146-2018-80-3-359-367.
  31. Bazhenova T. V., Gvozdeva L. G. Nestatsionarnye vzaimodeistviia udarnykh voln [Unsteady Interactions of Shock Waves]. Moscow, Nauka, 1977, 204 pp. (In Russian)

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Numerical modeling problems

Download (57KB)
3. Fig. 2. Change in density relative to pressure

Download (98KB)
4. Fig. 3. Permeability change

Download (94KB)
5. Fig. 4. Pressure distribution by computational domain ( ms)

Download (90KB)
6. Fig. 5. Speed distribution by computational domain ( ms)

Download (112KB)
7. Fig. 6. Density distribution by computational domain ( ms)

Download (103KB)
8. Fig. 7. Pressure distribution by computational domain

Download (113KB)
9. Fig. 8. Density distribution by computational domain

Download (112KB)
10. Fig. 9. Pressure change of passing waves

Download (120KB)
11. Fig. 10. Reflected wave pressure change

Download (114KB)

Copyright (c) 2022 Authors; Samara State Technical University (Compilation, Design, and Layout)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».