Обратная задача об источнике для уравнения смешанного параболо-гиперболического типа с дробной производной по времени в цилиндрической области

Обложка

Цитировать

Полный текст

Аннотация

Исследуется обратная задача об источнике для уравнения смешанного типа с дробным уравнением диффузии в параболической части и волновым уравнением в гиперболической части цилиндрической области. Решение задачи получено в виде ряда Фурье–Бесселя с использованием ортогонального множества функций Бесселя. Доказаны теоремы единственности и существования решения.

Об авторах

Дурдимурод Каландарович Дурдиев

Бухарское отделение Института математики им. В. И. Романовского АН Республики Узбекистан; Бухарский государственный университет

Автор, ответственный за переписку.
Email: durdiev65@mail.ru
ORCID iD: 0000-0002-6054-2827
Scopus Author ID: 16411517300
http://www.mathnet.ru/person29112

доктор физико-математических наук, профессор, заведующий отделением, проф. кафедры дифференциальных уравнений

Узбекистан, 705018, Бухара, ул. Мухаммад Икбол, 11; 705018, Бухара, ул. Мухаммад Икбол, 11

Список литературы

  1. Gel’fand I. M. Some questions of analysis and differential equations, Am. Math. Soc., Transl., II. Ser., 1963, vol. 26, pp. 201–219. DOI: https://doi.org/10.1090/trans2/026.
  2. Tikhonov A. N., Samarskii A. A. Uravneniia matematicheskoi fiziki [Equations of Mathematical Physics]. Moscow, Nauka, 1977, 735 pp. (In Russian)
  3. Leibenzon L. S. Dvizhenie prirodnykh zhidkostei i gazov v poristoi srede [Flow of Natural Liquids and Gases through a Porous Medium]. Moscow, Leningrad, Gostekhizdat, 1947, 244 pp. (In Russian)
  4. Tricomi F. O lineinykh uravneniiakh smeshannogo tipa [On Linear Equations of Mixed Type]. Moscow, Gostekhizdat, 1947, 192 pp. (In Russian)
  5. Fichera G. On a unified theory of boundary value problems for elliptic parabolic equations of second order, In: Boundary Problems in Differential Equations, Proc. Sympos. (Madison, April 20–22, 1959). Madison, Univ. of Wisconsin, 1960, pp. 97–120.
  6. Dzhuraev T. D., Sopuev A., Mamazhanov M. Kraevye zadachi dlia uravnenii parabolo-giperbolicheskogo tipa [Boundary Value Problems for Equations of Parabolic-Hyperbolic Type]. Tashkent, FAN, 1986, 220 pp. (In Russian)
  7. Sabitov K. B. On the theory of equations of mixed parabolic-hyperbolic type with a spectral parameter, Differ. Uravn., 1989, vol. 25, no. 1, pp. 117–126 (In Russian). EDN: TVVHKL.
  8. Sabitov K. B., Martem’yanova N. V. On the question of the correctness of inverse problems for the inhomogeneous Helmholtz equation, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2018, vol. 22, no. 2, pp. 269–292 (In Russian). EDN: UXHTKM. DOI: https://doi.org/10.14498/vsgtu1600.
  9. Sabitov K. B. Priamye i obratnye zadachi dlia uravnenii smeshannogo parabolo-giperbolicheskogo tipa [Direct and Inverse Problems for Equations Mixed Parabolic-Hyperbolic Type]. Ufa, Gilem, 2015, 271 pp. (In Russian). EDN: QWTYOF.
  10. Kilbas A. A., Srivastava H. M., Trujillo J. J. Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, vol. 204. Amsterdam, Elsevier, 2006, xv+523 pp. EDN: YZECAT.
  11. Metzler R., Klafter J. Subdiffusive transport close to thermal equilibrium: From the Langevin equation to fractional diffusion, Phys. Rev. E, 2000, vol. 61, no. 6, pp. 6308–6311. DOI: https://doi.org/10.1103/physreve.61.6308.
  12. Scalas E., Gorenflo R., Mainardi F. Fractional calculus and continuous-time finance, Physica A, 2000, vol. 284, no. 1–4, pp. 376–384. DOI: https://doi.org/10.1016/s0378-4371(00)00255-7.
  13. Sokolov I. M., Klafter J. From diffusion to anomalous diffusion: A century after Einstein’s Brownian motion, Chaos, 2005, vol. 15, no. 2, 026103. DOI: https://doi.org/10.1063/1.1860472.
  14. Sakamoto K., Yamamoto M. Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl., 2011, vol. 382, no. 1, pp. 426–447. DOI: https://doi.org/10.1016/j.jmaa.2011.04.058.
  15. Wei T., Li X. L., Li Y. S. An inverse time-dependent source problem for a time-fractional diffusion equation, Inverse Probl., 2016, vol. 32, no. 8, 085003. DOI: https://doi.org/10.1088/0266-5611/32/8/085003.
  16. Aleroev T. S., Kirane M., Malik S. A. Determination of a source term for a time fractional diffusion equation with an integral type over-determining condition, Electron. J. Differ. Equ., 2013, vol. 2013, no. 270, pp. 1–16. https://www.emis.de/journals/EJDE/2013/270/abstr.html.
  17. Liu Y., Li Zh., Yamamoto M. Inverse problems of determining sources of the fractional partial differential equations, In: Handbook of Fractional Calculus with Applications, vol. 2, Fractional Differential Equations. Berlin, De Gruyter, 2019, pp. 411–430, arXiv: 1904.05501 [math.AP]. DOI: https://doi.org/10.1515/9783110571660-018.
  18. Li G. S., Zhang D. L., Jia X. Z., Yamamoto M. Simultaneous inversion for the space-dependent diffusion coefficient and the fractional order in the time-fractional diffusion equation, Inverse Probl., 2013, vol. 29, no. 6, 065014. DOI: https://doi.org/10.1088/0266-5611/29/6/065014.
  19. Durdiev D. K., Rahmonov A. A., Bozorov Z. B. A two-dimensional diffusion coefficient determination problem for the time-fractional equation, Math. Methods Appl. Sci., 2021, vol. 44, no. 13, pp. 10753–10761. EDN: RVTMGQ. DOI: https://doi.org/10.1002/mma.7442.
  20. Durdiev D. K. Inverse coefficient problem for the time-fractional diffusion equation, Euras. J. Math. Comp. Appl., 2021, vol. 9, no. 1, pp. 44–54. EDN: CCQGZT. DOI: https://doi.org/10.32523/2306-6172-2021-9-1-44-54.
  21. Subhonova Z. A., Rahmonov A. A. Problem of determining the time dependent coefficient in the fractional diffusion-wave equation, Lobachevskii J. Math., 2022, vol. 43, no. 3, pp. 687–700. EDN: HAEXYF. DOI: https://doi.org/10.1134/S1995080222030209.
  22. Wei T., Zhang Z. Q. Robin coefficient identification for a time-fractional diffusion equation, Inverse Probl. Sci. Eng., 2016, vol. 24, no. 4, pp. 647–666. DOI: https://doi.org/10.1080/17415977.2015.1055261.
  23. Durdiev U. K. Problem of determining the reaction coefficient in a fractional diffusion equation, Differ. Equ., 2021, vol. 57, no. 9, pp. 1195–1204. EDN: XQJICE. DOI: https://doi.org/10.1134/S0012266121090081.
  24. Haubold H. J., Mathai A. M., Saxena R. K. Mittag–Leffler functions and their applications, J. Appl. Math., 2011, vol. 2011, 298628. DOI: https://doi.org/10.1155/2011/298628.
  25. Tolstov G. P. Fourier Series. New York, Dover Publ., 1976, x+336 pp.
  26. Petrova T. S. Application of Bessel’s functions in the modelling of chemical engineering processes, Bulg. Chem. Commun., 2009, vol. 41, no. 4, pp. 343–354.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Авторский коллектив; Самарский государственный технический университет (составление, дизайн, макет), 2022

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).