Analysis on generalized Clifford algebras
- Authors: Orelma H.1
-
Affiliations:
- Tampere University
- Issue: Vol 27, No 1 (2023)
- Pages: 7-22
- Section: Differential Equations and Mathematical Physics
- URL: https://journal-vniispk.ru/1991-8615/article/view/145887
- DOI: https://doi.org/10.14498/vsgtu1973
- ID: 145887
Cite item
Full Text
Abstract
In this article, we study the analysis related to generalized Clifford algebras , where is a non-zero vector. If is an orthonormal basis, the multiplication is defined by relations
for . The case corresponds to the classical Clifford algebra. We define the Dirac operator as usual by and define regular functions as its null solution. We first study the algebraic properties of the algebra. Then we prove the basic formulas for the Dirac operator and study the properties of regular functions.
About the authors
Heikki Orelma
Tampere University
Author for correspondence.
Email: Heikki.Orelma@tuni.fi
ORCID iD: 0000-0002-8251-4333
D.Sc. (Tech.), Adjunct Professor; Researcher; Dept of Mechanics and Mathematics
Finland, 33100, Tampere, Kalevantie 4References
- Yaglom I. M. Complex Numbers and Their Application in Geometry. Moscow, Fizmatgiz, 1963, 192 pp. (In Russian)
- Kanzaki T. On the quadratic extensions and the extended Witt ring of a commutative ring, Nagoya Math. J., 1973, vol. 49, pp. 127–141. DOI: https://doi.org/10.1017/S0027763000015348.
- Helmstetter J., Micali A., Revoy P. Generalized quadratic modules, Afr. Mat., 2012, vol. 23, no. 1, pp. 53–84. DOI: https://doi.org/10.1007/s13370-011-0018-x.
- Tutschke W., Vanegas C. J. Clifford algebras depending on parameters and their applications to partial differential equations, In: Some Topics on Value Distribution and Differentiability in Complex and p-Adic Analysis, Mathematics Monograph Series, 11; eds. A. Escassut, W. Tutschke, C. C. Yang. Beijing, Science Press, 2008, pp. 430–450.
- Bourbaki N. Éléments de mathématique. Algèbre. Chapitre 9. Berlin, Springer, 2007, 211 pp.
- Chevalley C. Collected Works, vol. 2, The algebraic theory of spinors and Clifford algebras, eds. P. Cartier, C. Chevalley. Berlin, Springer, 1997, xiv+214 pp.
- Delanghe R., Sommen F., Souček V. Clifford Algebra and Spinor-Valued Functions. A Function Theory for the Dirac Operator, Mathematics and its Applications, vol. 53. Dordrecht, Kluwer Academic Publ., 1992, xvii+485 pp.
- Gürlebeck K., Habetha K., Sprößig W. Funktionentheorie in der Ebene und im Raum, Grundstudium Mathematik. Basel, Birkhäuser, 2006, xiii+406 pp.
- Müller C. Properties of the legendre functions, In: Spherical Harmonics, Lecture Notes in Mathematics, 17. Berlin, Springer, 1966, pp. 29–37. DOI: https://doi.org/10.1007/BFb0094786.
Supplementary files
