Modeling of non-isothermal elastic-plastic behavior of reinforced shallow shells in the framework of a refined bending theory
- Authors: Yankovskii A.P.1
-
Affiliations:
- Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch of the Russian Academy of Sciences
- Issue: Vol 27, No 1 (2023)
- Pages: 119-141
- Section: Mechanics of Solids
- URL: https://journal-vniispk.ru/1991-8615/article/view/145893
- DOI: https://doi.org/10.14498/vsgtu1958
- ID: 145893
Cite item
Full Text
Abstract
The dynamic problem of non-isothermal and inelastic deformation of flexible shallow multidirectionally reinforced shells is formulated in the frameworks of the refined theory of bending. The temperature is approximated by a 7th order polynomial over the thickness of constructions. The geometric nonlinearity of the problem is modeled by the Karman approximation. The solution of the formulated coupled nonlinear two-dimensional problem is obtained using an explicit numerical scheme. The thermo-elastic-plastic response of fiberglass and metal-composite cylindrical elongated panels with an orthogonal reinforcement structure, loaded frontally with an air blast wave, has been studied. It is shown that, unlike reinforced plates similar in structure and characteristic dimensions, shallow shells under intense short-term loading must be calculated taking into account the occurrence of temperature fields in them. In this case, the refined theory of bending of curved panels should be used instead of the simplified version (the non-classical theory of Ambartsumyan). The temperature increment at separate points of shallow fiberglass shells can reach 14–34 \textcelsius, and in similar metal-composite panels can reach 50–150 \textcelsius. Cylindrical shallow shells are more intensively deformed when they are loaded by an air blast wave from the side of a convex front surface.
About the authors
Andrey P. Yankovskii
Khristianovich Institute of Theoretical and Applied Mechanics,Siberian Branch of the Russian Academy of Sciences
Author for correspondence.
Email: lab4nemir@rambler.ru
ORCID iD: 0000-0002-2602-8357
SPIN-code: 9972-3050
Scopus Author ID: 7003288442
http://www.mathnet.ru/person28373
Dr. Phys. & Math. Sci.; Leading Research Scientist; Lab. of Fast Processes Physics
Russian Federation, 630090, Novosibirsk, Institutskaya st., 4/1References
- Ambartsumian S. A. Obshchaia teoriia anizotropnykh obolochek [The General Theory of Anisotropic Shells]. Moscow, Nauka, 1974, 446 pp. (In Russian)
- Bogdanovich A. E. Nelineinye zadachi dinamiki tsilindricheskikh kompozitnykh obolochek [Nonlinear Problems of the Dynamics of Cylindrical Composite Shells]. Riga, Zinatne, 1987, 295 pp. (In Russian)
- Kulikov G. M. Thermoelasticity of flexible multilayer anisotropic shells, Mech. Solids, 1994, vol. 29, no. 2, pp. 27–35. EDN: TVBRLF.
- Bannister M. Challenges for composites into the next millennium — a reinforcement perspective, Compos. Part A: Appl. Sci. Manuf., 2001, vol. 32, no. 7, pp. 901–910. DOI: https://doi.org/10.1016/S1359-835X(01)00008-2.
- Abrosimov N. A., Bazhenov V. G. Nelineinye zadachi dinamiki kompozitnykh konstruktsii [Nonlinear Problems of Dynamics Composites Designs]. Nizhniy Novgorod, Nizhniy Novgorod State Univ., 2002, 400 pp. (In Russian)
- Reddy J. N. Mechanics of Laminated Composite Plates and Shells. Theory and Analysis. Boca Raton, CRC Press, 2004, xxiii+831 pp. DOI: https://doi.org/10.1201/b12409.
- Qatu M. S., Sullivan R. W., Wang W. Recent research advances on the dynamic analysis of composite shells: 2000–2009, Compos. Struct., 2010, vol. 93, no. 1, pp. 14–31. DOI: https://doi.org/10.1016/j.compstruct.2010.05.014.
- Kazanci Z. Dynamic response of composite sandwich plates subjected to time-dependent pressure pulses, Int. J. Non-Linear Mech., 2011, vol. 46, no. 5, pp. 807–817. DOI: https://doi.org/10.1016/j.ijnonlinmec.2011.03.011.
- Andreev A. Uprugost’ i termouprugost’ sloistykh kompozitnykh obolochek. Matematicheskaia model’ i nekotorye aspekty chislennogo analiza [Elasticity and Thermoelasticity of Layered Composite Shells. Mathematical Model and Some Aspects of Numerical Analysis]. Saarbrücken, Palmarium Academic Publ., 2013, 93 pp. (In Russian). EDN: QZAPNP.
- Vasiliev V. V., Morozov E. Advanced Mechanics of Composite Materials and Structural Elements. Amsterdam, Elsever, 2013, xii+412 pp. EDN: UERHXD. DOI: https://doi.org/10.1016/C2011-0-07135-1.
- Gill S. K., Gupta M., Satsangi P.S. Prediction of cutting forces in machining of unidirectional glass fiber reinforced plastics composite, Front. Mech. Eng., 2013, vol. 8, no. 2, pp. 187–200. DOI: https://doi.org/10.1007/s11465-013-0262-x.
- Solomonov Yu. S., Georgievskii V. P., Nedbai A. Ya., Andryushin V. A. Prikladnye zadachi mekhaniki kompozitnykh tsilindricheskikh obolochek [Applied Problems of Mechanics of Composite Cylindrical Shells]. Moscow, Fizmatlit, 2014, 408 pp. (In Russian)
- Morinière F. D., Alderliesten R. C., Benedictus R. Modelling of impact damage and dynamics in fibre-metal laminates — A review, Int. J. Impact Eng., 2014, vol. 67, pp. 27–38. DOI: https://doi.org/10.1016/j.ijimpeng.2014.01.004.
- Gibson R. F. Principles of Composite Material Mechanics. Boca Raton, CRC Press, 2016, xxiii+700 pp. DOI: https://doi.org/10.1201/b19626.
- Dimitrienko Yu. I. Mekhanika kompozitnykh konstruktsii pri vysokikh temperaturakh [Mechanics of Composite Structures under High Temperatures]. Moscow, Fizmatlit, 2019, 448 pp. (In Russian). https://www.rfbr.ru/rffi/ru/books/o_2079143#1
- Kompozitsionnye materialy: Spravochnik [Composite Materials: Handbook], ed. D. M. Karpinos. Kiev, Nauk. Dumka, 1985, 592 pp. (In Russian)
- Handbook of Composities, ed. G. Lubin. New York, Van Nostrand Reinhold, 1982.
- Leu S.-Y., Hsu H.-C. Exact solutions for plastic responses of orthotropic strain-hardening rotating hollow cylinders, Int. J. Mech. Sci., 2010, vol. 52, no. 12, pp. 1579–1587. DOI: https://doi.org/10.1016/j.ijmecsci.2010.07.006.
- Vena P., Gastaldi D., Contro R. Determination of the effective elastic-plastic response of metal-ceramic composites, Int. J. Plasticity, 2008, vol. 24, no. 3, pp. 483–508. DOI: https://doi.org/10.1016/j.ijplas.2007.07.001.
- Brassart L., Stainier L., Doghri I., Delannay L. Homogenization of elasto-(visco) plastic composites based on an incremental variational principle, Int. J. Plasticity, 2012, vol. 36, pp. 86–112. DOI: https://doi.org/10.1016/j.ijplas.2012.03.010.
- Akhundov V. M. Incremental carcass theory of fibrous media under large elastic and plastic deformations, Mech. Compos. Mater., 2015, vol. 51, no. 3, pp. 383–396. EDN: MCFUEJ. DOI: https://doi.org/10.1007/s11029-015-9509-4.
- Yankovskii A. P. A refined model of elastic-plastic bending deformation of flexible reinforced shallow shells based on explicit “cross” scheme, Comput. Cont. Mech., 2017, vol. 10, no. 3, pp. 276–292 (In Russian). EDN: ZHZVIN DOI: https://doi.org/10.7242/1999-6691/2017.10.3.22.
- Yankovskii A. P. Modeling of thermoelastic-visco-plastic deformation of flexible reinforced plates, Mech. Solids, 2022, vol. 57, no. 7, pp. 111–133. DOI: https://doi.org/10.3103/S0025654422070184.
- Reissner E. On transverse vibrations of thin shallow elastic shells, Quart. Appl. Math., 1955, vol. 13, no. 2, pp. 169–176. DOI: https://doi.org/10.1090/qam/69715.
- Greshnov V. M. Physico-Mathematical Theory of High Irreversible Strains in Metals. Boca Raton, CRC Press, 2019, xii+242 pp. DOI: https://doi.org/10.1201/9780429259791.
- Houlston R., DesRochers C. G. Nonlinear structural response of ship panels subjected to air blast loading, Comp. Struct., 1987, vol. 26, no. 1–2, pp. 1–15. DOI: https://doi.org/10.1016/0045-7949(87)90232-X.
- Malmeister A. K., Tamuzh V. P., Teters G. A. Soprotivlenie zhestkikh polimernykh materialov [Resistance of Rigid Polymeric Materials]. Riga, Zinatne, 1972, 500 pp. (In Russian)
- Yankovskii A. P. Simulation of processes of heat conductivity in spatially reinforced composites with an arbitrary orientation of fibers, Prikl. Fiz., 2011, no. 3, pp. 32–38 (In Russian). EDN: NURWHZ.
- Lukanin V. N., Shatrov M. G., Kamfer G. M., et al. Teplotekhnika [Heat Engineering], ed. V. N. Lukanin. Moscow, Vyssh. Shk., 2003, 671 pp. (In Russian). EDN: QMHYSH.
- Bezukhov N. I., Bazhanov V. L., Gol’denblat I. I., et al. Raschety na prochnost’, ustoichivost’ i kolebaniia v usloviiakh vysokikh temperatur [Calculations for Strength, Stability Vibrations under High Temperatures], ed. I. I. Gol’denblat. Moscow, Mashinostroenie, 1965, 567 pp. (In Russian)
Supplementary files
